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DEFINITION IN GEOMETRY 

Kevin G. Long 

Introduction 

The exposition of every science1 presupposes a certain ex
perience on the part of the learner in order that the instruc
tion result, not in mere opinion, but in knowledge properly 
so called. Biology, for example, presupposes the experience 
of living things and their operations, and logic, that of dis
cursive thought. Political science presupposes the vicarious 
experience of the origin, growth and decay of human soci
eties acquired through the reading of history. Although such 
raw experience is a necessary propaedeutic to science, it is 
not sufficient. The ftrst work of any science is to organize its 
proper experience by comparison and contrast. Once this is 
accomplished in the mind of the learner, the work of instruct
ing him in the science itself can begin in earnest. 

Metaphysics also presupposes a certain "experience," al
though not exactly in the same sense that the inferior sciences 
do. Its proper experience is having acquired a knowledge of 
those inferior sciences, or at least of their principles and meth
ods. 2 The reason is that our ft.rst experience of 'being' is in 

Kevin G. Long, Ph.D., is a graduate of Thomas Aquinas College 
(1977) and holds an M.A. in philosophy from Universite Laval and a 
PhD in government from Claremont Graduate School. He is currendy 
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1 Unless otherwise indicated, the term sdence should be understood in 
the sense of episteme in Aristode or sdentia in St. Thomas Aquinas. 

2 Aristode advises that the liberal arts be studied "only in a certain 
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those contracted states in which the inferior sciences study it: 
being qua mobile, being qua extended, and so on. Thus the 
first work of metaphysics is to organize its proper experience: 
fmding the order among the inferior sciences. This entails ob
serving the distinctions between the sciences and appreciating 
their principles and methods, both common and proper. The 
following thesis is a limited contribution to that endeavor, 
and thus should be judged neither as a work of mathematics 
proper nor of the "philosophy of mathematics," but of meta
physics. 

The scope of this thesis is limited in three ways. First, it is 
limited to those sciences known as mathematical. Second, it 
is limited to one principle: definition. Third, it is limited to 
the mathematical development from Pythagoras to Descartes 
and Newton. 

It is hoped that whatever light may be shed on these matters 
may illuminate the path to others of equal or greater impor
tance. This hope is justified by the assumption that an investi
gation of mathematics is in some way prior to other possible 
investigations. I propose three reasons for thinking this to be 
the case. 

First, mathematics has traditionally been placed first in the 
order of learning. The ability of the imagination to grasp its 
principles makes it proportionate to the mind of the begin
ner. 3 Furthermore, because of this proportionality, it engen
ders confidence in the learner about more difficult studies. 4 

Likewise, the examination of the principle of defmition in 

degree" since the mastery associated with the expert precludes advance
ment to wisdom. C£ Politics, Bk. VII, Chap. 2 (I337b I5-I7) On the 
proper extent of the study of the inferior sciences, see Ernest L. Fortin, 
"The Paradoxes of Aristotle's Theory of Education," Laval Theologique 
et Philosophique, Vol. I3, no. 2, (I957) pp. 248-60. 

3 C£ In VI Ethicorum, Lect. 7, n. I 209- I I, In Metaphysicorum Proemium; 
In Librum de Causis, Lect. 1. 

4 Consider the eloquent testimony of Albert Einstein to this point 
cited on p. 70. 
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mathematics is a first step toward a more comprehensive study 
of defmition generally. 

Secondly, since the mode of abstraction in mathematics is 
peculiar among the sciences, its defmitions require particular 
attention, lest we be haunted by the paradoxes of Platonic 
Forms. 

Third, the method of mathematics, because of its rigor and 
orderly demonstration, is the paradigm for other disciplines, 
especially in modern times in which the mathematical aspect 
of natural science is often overemphasized. Thus the ability to 
judge whether a mathematical defmition has been made well 
or badly will contribute much to our understanding of defi
nition in those disciplines built upon a mathematical model. 

Let us then outline the order of the present investigation. 
The following text from Aristotle suggests a natural place to 
begin: 

The framer of a definition should first place the object in 
its genus, and then append its differences; for of all the el
ements of the definition, the genus is usually supposed to 
be the principle mark of the essence of what is defmed. 5 

Thus the first chapter will be devoted to the remote genus of 
all mathematical defmition, namely quantity. 

The division of the genus of quantity into its 'species', 6 

continuous (magnitude) and discrete (multitude), provides the 
proximate genera for definition. But since these are studied 
by distinct and irreducible sciences (as will be shown), the 
modes of defmition will differ. The second chapter will ex
amine the relation between these sciences in some detail. 

The third chapter begins the treatment of definition. Al
though the treatment applies to defmition generally, mathe
matical examples have been employed wherever possible. The 

5 Topics, Bk. VI, Chap. I (I39a 28-32); c£ Posterior Analytics, Bk. II, 
Chap. I5 (96b I5)· 

6 As will become evident, magnitude and multitude are not species 
properly so-called, but rather meanings of an analogous name. 
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general principles of the third chapter will then be applied in 
the fourth chapter to cases peculiar to geometry, namely, the 
locus and the so-called ''mechanical'' definitions. 

Finally, in order to illustrate the principles laid out in the 
preceding chapters, the various methods of defining the ''conic 
sections" will be analyzed and compared. An epilogue will 
summarize the fmdings of the analysis. 

I. Quantity as a Genus 

I . The Place if Quantity among the Categories 

Since we defme a thing through its genus, 1 it will be neces
sary to inquire into the genus peculiar to mathematics, namely, 
quantity. Before investigating quantity itself, however, its re
lation to the other genera ought first to be established. 

St. Thomas, in his Commentary on the Physics, distinguishes 
the categories through predication. Predication involves three 
principal ways according to which something can be said of 
a subject. According to the first, the predicate belongs to the 
very essence of the subject, as when man is said of Socrates 
or animal of man. The third, on the other hand, is completely 
extrinsic to the subject, and merely denominates it. But it is 
the second which is of interest here. 

Another mode is that in which what does not belong to the 
essence of a thing, but which inheres in it, is predicated of a 
thing. This is found either on the part of the matter of the 
subject, and thus is the predicament of quantity for quantity 
properly follows upon matter ... , or else it follows upon 
the form, and thus is the predicament of quality (hence also, 
qualities are founded upon quantity, as color is in a surface, 

1 Not everything is defmable through the genus, however. The supreme 
genera, precisely because they are supreme, are exceptions. While they 
cannot be defmed in the strict sense, they can be distinguished from 
one another by certain marks which we will investigate in the case of 
quantity. 
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and figure is in lines or in surfaces), or else it is found in 
respect to another, and thus is the predicament of relation. 2 

In this passage, St. Thomas associates quality with form 
and quantity with matter. But it is important to keep in mind 
that matter is always said relative to form. Thus the 'substan
tial form' is form with respect to prime matter. However, sub
stantial form and prime matter, taken as a composite, consti
tute the matter with respect to the accidental forms. Hence, 
the first accidental form to inhere in substance is quantity. In 
turn, quality, or at least figure, which is the fourth 'species' of 
quality, inheres as its proper matter in quantity. 3 This gives 
rise to the ordering which St. Thomas presents elsewhere in 
his commentary: 

Among all the accidents which come to [ adveniunt] sub
stance quantity comes first, and then sensible qualities, and 
actions and passions [passiones], and the motion consequent 
upon sensible qualities. 4 

In the following sections, we will first consider the genus 
of quantity itself, and then what belongs to it. 

Now something can belong to a genus in one of two ways. 5 

The first way is by belonging to the genus properly. This can 
be either as an attribute of the genus, i.e., its marks or charac
teristics, or as a species of it. The second way is by belonging 
to the genus by reduction, as, for example, its determining 
principles. Each of these ways will be considered in its turn. 

2. The Spedes if Quantity 

It is significant that Aristotle, in treating quantity in the Cate
gories, 6 immediately divides the genus into two species without 

2 In III Physicorum, Lect. 5, n. 322. 
3 A fuller account of these relationships will be given in Chapter III. 
4 In II Phys., Lect. 3, n. 161. 

5 C£ Summa Theologiae I, Q. 3, art. 5, corp. 
6 Categories, Chap. 6 (4b 20). 
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first indicating what is common to them, namely, the marks 
of the genus. He does not begin to designate these marks until 
midway through the chapter. The reason for this lies in Aris
totle's general method of proceeding from the better known 
to the lesser known. The 'species' of quantity, magnitude and 
multitude, are far better known taken severally than as united 
under a genus. 

A sign of this is that, in English, 7 we ask the question How 
much? of magnitude and may respond by much or little. Again, 
we ask How many? of multitude and respond with many or 
Jew. But we have no corresponding expressions for quantity in 
its generic meaning. Although the comparative form more is 
common to much and many, it is noteworthy that we intensify 
it by applying the adverbial forms of the latter two: much more 
and many more. Thus the original distinction is once more 

manifest. 
Another sign is that we call the act of notifying multitude 

counting and that of magnitude measuring. That measuring in
volves counting does not disprove that they are distinct, but 
that counting is prior to measuring and more fundamental. 
Measurement presupposes counting, but counting does not 
presuppose measurement. 8 The term reckoning is often appli
cable to both but it is seldom used. 

Thus, it is only by comparing magnitude and multitude as 
distinct that we come to appreciate them as 'species' under 
a common 'genus' 9 and distinguished by the 'specific differ-

7 In English, at least, when properly spoken. The following anecdote 
brings to light a subtlety of the language often taken for granted by na
tive speakers: "A woman in Goshen, Indiana, told me recently. ~at her 
daughter-in-law, for whom English is a second language, was s1tt1ng on 
the floor one day in despair, surrounded by housekeeping items to be 
kept, put in the attic, or given away. 'So many junk!' she said." Newman, 

p. 8. . . 
8 I.e. multitude is logically prior to magnitude and thus quantity 1s not 

predicated of them equally; therefore they are not properly species of a 

genus. 
9 See footnote 6, p. 33, supra. 
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ences' of continuous and discrete. One of the strongest ties be
tween these two is the common property of ratio. For we can 
readily see that a line can have to another line the same ratio 
that a number has to a number. 10 But the disparity between 
numbers and lines is reflected by the fact that the proportion 
cannot be alternated, i.e., a line has no ratio to a number. 
We are left with the mark that quantity is able to be divided 
into homogeneous, integral parts, of which the one is not the 
other. 

The next division is that of magnitude into its 'species' _11 

If we follow Aristotle's division in the Greek text literally, 
as the medievals did, 12 we would say line, suiface and body. 
But these should be understood in the more abstract senses 
of length, area and volume, for two reasons. 

First of all, body and suiface connote not only extension 
but figure, which belongs essentially to the genus of quality, 13 

whereas volume and area connote only the supposit which fig
ure terminates. Three signs of this can be taken from ordinary 
language: (a) We are inclined to say that we measure a thing's 
volume or area, rather than its body or surface. (b) We say 
that a body has volume and not that a volume has body. (c) 
We refer to a curved surface, but not a curved area. Again, 
line adds to length the notion of a limit or boundary. 14 An 
infinitely long object, if such could exist, would have length, 
but not a length, i.e., its length would not constitute a line. 15 

10 Elements, Bk. X, Prop. 5· 
11 Categories, Chap. 6 (4b 24) This division is purely logical. Only vol

ume is a magnitude in reality (secundum rem). Area and length per se have 
existence only in the mind (secundum rationem) as the determining prin
ciples of volume. 

12 Here are Aristotle's words and William ofMoerbeke's translations: 
a) gramme a) linea 
b) epiphaneia b) superficies 
c) soma c) corpus 

13 This premise will be examined further in Sect. 4 below. 
14 Metaphysics, Bk. A, Chap. 13 (1020a 13). 
15 C£ note 3, Chap. II, sect. I. 
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Secondly, the mathematicians, who must be precise about 
their defmitions, divide the genus into those magnitudes hav
ing length only, those having length and breadth, and those 
having length, breadth and depth. 16 

There is a paradox in Aristode's division of magnitude 
which demands comment. In his Metaphysics, 17 he lists length, 
breadth and depth as species of magnitude, but adds speech, 
space and time to the list in the Categories. 18 Commenting on 
these passages, St. Thomas solves the riddle by observing that 
magnitude is considered in the latter insofar as it is a measure
ment; in the former, insofar as it is a quantity, stricdy speaking: 

There [in the Categories] he distinguished between the species 
of quantity from the point of view of the different kinds of 
measure ... whereas here [in the Metaphysics] he considers 
the species of quantity from the being of quantity. 19 

It remaitis to consider the marks of quantity. 

3. The Marks of Quantity 

The category of quantity has three marks or characteristics. 
The ftrst is that quantities have no contraries. Aristode, in the 
Categories, raises two objections to this which merit investi
gation here. 

The ftrst is that 'great' and 'small' refer to quantity and are 
contraries. Aristode answers the objection in two ways. First, 
he shows that these are quantities considered as related, not 
as such, and hence belong properly to the category of rela
tion. Second, he argues that 'great' and 'small' are not truly 
contraries, like 'black' and 'white,' but rather correlatives like 
'master' and 'slave.' This is evident from the fact that things 
are always called 'great' or :small' with riference to another. This 

16 C£ Elements, Bk. I, De£ I, "line"; De£ 5 "surface"; Bk. XI, De£ I, 
"solid." 

17 Metaphysics, Bk. 11, Chap. I3 (1020a 29-33). 
18 Categories, Chap. 6 (sa 6-I4)· 
19 In 11 Meta., Lect. IS, n. 986. 
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is the mark of correlatives. Nevertheless, the point is confus
ing since 'great' and 'small' seem to admit of intermediates 
and thus resemble contraries. 

Yet it is the second objection which is most interesting for 
our purposes. Earlier in his treatment of quantity, Aristode 
noted that place ('t6Jto~ [topos]) can be considered as a quan
tity. But place seems to admit of contraries since "men defme 
the term 'above' as the contrary of 'below.' " 20 This difficulty 
appears even more clearly in the De Caelo: 

But the two forms of rectilinear motion are opposed to one 
another by reason of their places; for up and down is a dif
ference and a contrary opposition in place. 21 

Presumably, the same objection holds for the terms of any 
local motion. 

Mter stating the objection, Aristode does not give a sep
arate answer, probably because it would so closely resemble 
his answer to the ftrst. The contrariety involved in place does 
not belong to the placed thing as quantijied, but follows upon 
some physical attribute or relation. The notion of direction is 
foreign to that of extension considered as such. We will return 
to this point later. 

The second mark of quantity is that it does not admit of 
variation in degree. But this does not seem at ftrst glance to 
be the case. Whatever varies in degree is susceptible to being 
more or less. And seven is certainly more than six and less 
than eight. 

2° Categories, Chap. 6, (6a I2). Dr. Sholzoffers the following commen
tary on this text: "In order to understand this objection we must under
stand the ancient notion of the universe. The universe was said to be in 
the shape of a sphere, with the earth in the precise center. From this view 
of the universe, it seems to follow that the distance from the earth to 
the heavens is an ultimate or extreme distance, for one cannot go further 
from the center of the heavens, which contain all things under them 
and outside of which there is nothing." "The Category of Quantity," 
in Laval Theologique et Philosophique, Vol. I9, No. 2 (I963) p. 250. 

21 De Caelo, Bk. I, Chap. 4 (27Ia 4-6). 
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However, variation in degree is here contradistinguished 
from difference in kind. Thus while one shade may be more 
red than another, this seven apples is just as much seven as 
this seven cats. Quantities can only differ in kind. This sec
ond mark is a consequence of the first. Since quantity has no 
contraries, it has no true intermediates, and having no inter
mediates, it cannot have variation in degree. 

The third mark is that equality and inequality are said of 
quantity. This mark is more proper and distinctive than the 
ftrst two since it is not only true of every quantity, but true 
only of quantity. 

The species and marks of quantity having been considered, 
it remains to consider its termination. 

4. The Termination of Quantity 

Based upon the order of the various categories laid out above, 
one might readily conclude that anyone studying quantity 
need not be concerned with quality, since the understanding 
of the former is prior to, and independent of, the latter. But 
it is important to see that, and in what sense, quantity does 
in fact depend on quality. 

Both quantity and quality determine a subject, but in dif
ferent ways. The medieval writers could simply manifest the 
distinction in Latin by the questions quantum? and quale?, to 
which quantity and quality are the genera of the respective an
swers. Now even though English, as we have seen above, has 
no question corresponding to quantum?, the expression 'What 
is it like?' does approximate the intent of the Latin quale?. A 
sign that the word 'like' co~otes quality is this: If two things 
numerically distinct agree in substance, we say that they are 
'the same', if in quantity, 'equal', if in quality, 'lik.e.' 22 

Now, as long as we are considering, for example, that 
Socrates has size simply, we need not go beyond the cate-

22 C£ Metaphysics, Bk. f.., Chap. 9, passim. 
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gories of substance and quantity. Yet as soon as we say that 
Socrates has a size, we introduce the idea of a boundary or 
termination. "Having a size" connotes a kind of unity that 
"having size" does not. What determines size to be this size 
rather than another is its boundary, that beyond which it does 
not extend. Thus, having a size implies having a boundary, 
which for Socrates is his shape or figure. For the same reason, 
the geometer cannot speak only of area, but must speak about 
an area, namely an area bounded by a certain line or lines: this 
circle or that square. But since circle and square (and shape 
generally) are qualities properly belonging to quantities, they 
fall in the category of quality rather than quantity.23 

Such shapes, however, are not considered by the geome
ter insofar as they are qualities, but only insofar as they are 
the terminations of quantity. For the geometer must consider 
the principles of magnitude as well as magnitude itself, even 
if those principles lie outside the proper subject (genus subjec
tum) of his science. The point qua indivisible, for example, is 
not itself a magnitude, but rather the termination of magni
tude (length), and therefore a principle24 of it. The geometer 
considers quality under this formality. The physician, on the 
other hand, would consider a shape such as the circularity 
of a wound insofar as it characterizes the wound. He thus 
knows something qualitative about it. The physician knows 
that circular wounds heal more slowly, the geometer knows 
why.2s 

Shape or figure is in some ways a principle of quantity, but 
in other ways an effect. If a given continuous quantity in two 
dimensions, for example, has a given number of boundaries 
whose lengths are in a certain proportion, and its perime-

23 In particular, the fourth 'species' of quality. C£ Aristotle, Categories, 
Chap. 8 (roa n). Again, this is not properly a species, but a meaning of 
an analogous name. 

24 In fact, this is the first meaning of "principle." C£ Aristotle, Meta
physics, Bk. f.., Chap. I. 

25 In I Post. Anal., Lect. 25, n. 212. 
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ter and area are given, its figure will be determined by these 
quantities. 26 On the other hand, figure itself determines cer
tain properties, as whether the sum of the squares on the sides 
of some given triangle is greater than, less than, or equal to 
the square on the remaining side.27 Nevertheless, figure is far 
better known as the principle of quantity than as its effect, 
and thus the geometer demonstrates through figure as if pro
ceeding from a prior cause. 

It should be noted that 'figure' is said of magnitudes and 
numbers in rather different senses. As applied to magnitude, 
it refers to the spatial disposition of its extended parts. This 
cannot be applied to numbers since they are distinguished 
from magnitude precisely because their parts are not disposed 
in such fashion. However, the parts of numbers are related to 
one another by equality or inequality, giving rise to Euclid's 
distinction between 'square' and 'cubic' numbers. 28 It is obvi
ous, from the fact that these terms have been transposed from 
geometry, that 'figure' is used in arithmetic only analogously. 

The terminations of quantity, or specifically, of magnitude, 
are divided into as many species as magnitude itself. Thus, 
length is terminated by points, area by lines, and volume by 
surfaces. 

Now lines and surfaces, insofar as they are terminations of 
magnitude, also fall into the fourth 'species' of quality, since 
they can answer the question 'What is it like?'. To say that 
something is 'panduriform' (fiddle-shaped), for example, is to 
speak of it qualitatively rather than quantitatively. However, 
point does not, as such, answer the question 'What is it like?', 
and thus it is not included in the fourth 'species' of quality. 

26 C£ Courant and Robbins, What Is Mathematics?, pp. 231-32. 
27 Elements, Bk. I, Prop. 48; Bk. II, Prop. 12, 13. 
28 Elements, Bk. VII, De£ 18, 19. 
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II. Division of the Mathematical Sciences 

I . Number and Order of the Mathematical Sdences 

In examining the number and order of the mathematical sci
ences it will be advantageous to consider first the opinions of 
the writers of antiquity on this subject. 

The first ordering, as Proclus relates, has come down to us 
from the school ofPythagoras: 

The Pythagoreans considered all mathematical science to 
be divided into four parts; one-half they marked off as 
concerned with [number]l (1too6v) [poson], the other half 
with magnitude (1tT]ALxov) [pelikon]: and each of these they 
posited as twofold. A [number] can be considered in regard 
to its character by itself or in relation to another [number], 
magnitudes as either stationary or in motion. Arithmetic, 
then, studies [number] as such; music, the relations between 
[numbers]; geometry, magnitude at rest; spherics, 2 magni
tude inherently moving. 3 

1 Morrow incorrectly translates poson as "quantity" in this context. 
C£ Heath, Greek Mathematics, Vol. I, p. 12. 

2 "Spheric," according to Heath, "means astronomy, being the geom
etry of the sphere considered solely with reference to the problem of 
accounting for the motions of the heavenly bodies." Greek Mathematics, 
Vol. I, p. 11. 

3 Proclus, Commentary, 35-36 (pp. 29-30). In light of the discussion 
of the termination of quantity in the previous chapter, it is interesting 
to note how Proclus concludes this paragraph: 

The Pythagoreans consider [number] and magnitude not in their 
generality, however, but only as finite in each case. For they say 
that the sciences study the finite in abstraction from infinite quanti· 
ties and magnitudes, since it is impossible to comprehend infinity 
in either of them. Since this assertion is made by men who have 
reached the summit of wisdom, it is not for us to demand that we 
be taught about [number] in sense objects or magnitude that ap
pears in bodies. To examine these matters is, I think, the province 
of the science of nature, not that of mathematics itsel£ (emphasis 
added). 
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This fourfold division appears to be the root of the quadriv
ium of the traditional liberal arts. We shall see later that it is 
exhaustive and irreducible, though not exacdy as it is stated 
here. First, however, it will be useful to examine other enu
merations which have been proposed by the writers of antiq

uity. 
Plato, in his Republic, gives essentially the same list as 

Pythagoras, but counts plane geometry and solid geometry 
( m:eQEOflE'tQLa) [stereometria] as distinct sciences. 4 

Archytas, a contemporary and friend of Plato, follows the 
Pythagorean division: 

Thus they [the mathematicians] have handed down to us 
clear knowledge ... about geometry, arithmetic and sphae
ric, and last, not least, about music; for these ~-ta8rn.w:ta 
[mathemata] seem to be sisters.5 

Aristode, in the Posterior Analytics, 6 gives a list of eight math
ematical sciences: plane geometry, solid geometry, arithmetic, 
astronomy, optics, mechanics, harmonics and navigation. He 
divides them according to his distinction between knowledge 
of the fact (quia) and knowledge of the reasoned fact (propter 
quid). The first four sciences, he says, provide the propter quid 
of the truths contained in the last four, respectively. 

Gerninus, a Rhodesian Stoic, also lists eight sciences, but 
divides them two against six, as Proclus relates: 

But others, like Geminus, think that mathematics should be 
divided differendy; they think of one part as concerned with 
intelligibles only and of another as working with percepti
bles and in contact with them. By intelligibles, of course, 
they mean those objects that the soul arouses by herself and 
contemplates in separation from embodied forms. Of the 
mathematics that deals with intelligibles they posit arith
metic and geometry as the two primary and most authentic 

4 Republic, Bk. VII, (528 b). 
5 Heath, Greek Mathematics, Vol. I, p. II. 
6 Posterior Analytics, Bk. I, Chap. I3 (78b 3r79a I). 
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parts, while the mathematics that attends to sensibles con
tains six sciences: mechanics, astronomy, optics, geodesy, 
canonics and calculation. 7 

Each of the foregoing accounts sheds light upon the various 
mathematical disciplines and the order among them. Yet none 
of these accounts is sufficient. For none of them gives either a 
unifying principle in virtue of which each of these sciences is 
called 'mathematical,' or the principles by which they can be 
clearly distinguished one from another. Such principles will 
be sought in the subsequent sections. 

2. Place of the Mathematical Sdences 

The theoretical sciences have traditionally been divided into 
physics, mathematics and metaphysics. In order to see what 
is common to the mathematical sciences, it will be helpful to 
examine the basis of this division. 

At the beginning of his Commentary on the Physics, St. 
Thomas points out that the theoretical sciences should be 
distinguished according to their diverse modes of defining. 
He then shows that there are only three possible modes of 
defining since there are only three ways in which a definition 
is related to the thing defmed: 

There are some things whose existence depends upon mat
ter and which cannot be defmed without matter. Further, 
there are other things which, even though they cannot exist 
except in sensible matter, have no sensible matter in their 
definitions .... There are still other things which do not 
depend on matter either according to their existence or ac
cording to their definitions. 8 

7 Proclus, Commentary, 38 (p. 3I) C£ Heath, Greek Mathematics, Vol. 
I, p. 17: "It is the function of geodesy to measure, not a cylinder or cone 
(as such), but heaps as cones or pits as cylinders. Canonic is the theory 
of the musical intervals." 

8 In I Physicorum, Lect. I, n. 2. 
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The third division is rather straightforward. These things in 
no way depend on matter. However, the third division does 
not bear on our problem. The mathematical sciences involve 
matter in some way and hence belong to either the first or 
second division. But the distinction between these is rather 
complicated, and we must proceed carefully. First, let us ex
amine how St. Thomas explains the distinction here: 

These [the ftrst two divisions] differ from one another as 
the curved differs from the snub. For the snub exists in sen
sible matter and it is necessary that sensible matter fall into its 
definition, for the snub is a curved nose .... But sensible 
matter does not fall into the definition of the curved, even 
though the curved cannot exist except in sensible matter. And 
this is true of all the mathematicals. 9 

Since it is not altogether clear from this passage what is 
meant by 'sensible matter', it will be helpful to examine a re
lated text in which St. Thomas is more explicit: 

Mathematical species, however, can be abst.racted by the in
tellect from sensible matter, ... ; not from common intel
ligible matter, but only from individual matter. For sensible 
matter is corporeal matter as subject to sensible qualities, such as 
being cold or hot, hard or soft and the like: while intelligible 
matter is substance as subject to quantity. 

Now it is manifest that quantity is in substance before 
other sensible qualities are. Hence, quantities, such as num
ber and dimension, and figures, which are the terminations 
of quantity, can be considered apart from sensible qualities; 
and this is to abstract them from sensible matter. 10 

In attempting to understand this passage, we should keep 
in mind two important points: 

(I) As noted above, "matter" is always said relatively to some 
"form." The same thing can be viewed as matter in one re-

9 Ibid. (emphasis added). 
10 Summa Theologiae, I, Q. 85, art. I, ad 2; c£ In Boethium de Trinitate, 

Q. 5, art. 3· 

Kevin G. Long 

spect and as form in another. Hence, whenever we speak of 
'such-and-such matter' there must exist some corresponding 
'such-and-such form' to which it refers. (The same principle 
does not apply to form which can exist without matter.) 

(2) We are considering here the various relationships exist
ing among four distinct realities (res): substance, quantity, figure 
(the fourth 'species' of quality) and sensible quality (the third 
'species' of quality). The rest (sensible matter, corporeal mat
ter, intelligible matter, etc.) are distinctions only in ratione. 

Quantity, then, can be considered as matter both with re
spect to figure and with respect to sensible quality. Thus quan
tity qua subject to figure is called corporeal matter and qua sub
ject to sensible quality, it is called sensible matter. St. Thomas 
states the relationship between these ideas when he says that 
''sensible matter is corporeal matter as subject to sensible qual
ities." 

If quantity is the matter of figure, then conversely, figure is 
the form of quantity. Thus figure qua inhering in quantity can 
be designated corporeal form. The composite of these is called 
body (Latin, corpus) and it is defmed as what has a length, a 
depth and a breadth. 11 

In turn, substance12 can be viewed as the matter of quan
tity. But since quantity can be related either to figure or to 
sensible quality, substance will also have a dual relationship. 
Substance, when considered as subject to figure, is called in
telligible matter, 13 but as subject to sensible qualities it is (com
mon) sensible matter. Examples of the latter are flesh and bone 
(material parts of substance) insofar as they are subject to hot 
and cold, etc. 

Clearly then, since the mathematician considers quantity 
and substance, not as related to sensible qualities, but only as 

11 Summa Theologiae, I, Q. 3, art. I, obj. I. 
12 I.e., the composite of prime matter and substantial form. 
13 This medieval term of art may be misleading to the modern reader. 

The "intellect" referred to here is, in the flrst instance, the imagination. 
See Deferrari, Dictionary, p. 632. 
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related to figure, he is said to abstract from sensible matter, 
but not from intelligible matter. (see figure) 
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We are now in a better position to understand still another 

text on the same topic, part of which has been quoted earlier: 

[The understanding of] the posterior does not belong to 14 

the understanding of the prior, but conversely. Hence the 
prior can be understood without the posterior, but not con
versely .... 

Among all the accidents which come to substance, quan
tity comes first, and then the sensible qualities, and actions 
and passions, and the motions consequent upon sensible 
qualities. Therefore quantity does not embrace in its intelli-

14 Blackwell et al. consistently mistranslated "non sunt de" as "is not 
derived from"; pp. 78, 79· 
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gibility the sensible qualities or the passions or the motions. 
Yet it does include substance in its intelligibility. Therefore 
quantity can be understood without matter, which is subject 
to motion, and without sensible qualities, but not without 
substance. And thus quantities and those things which be
long to them 14 are understood as abstracted from motion 
and sensible matter, but not from intelligible matter ... 

Since, therefore, the objects of mathematics are abstracted 
from motion according to understanding and since they do 
not include in their intelligibility sensible matter, which is the 
subject cf motion, the mathematician can abstract them from 
sensible matter. 15 

It is evident from this text that quantity can be viewed as 
the subject not only of sensible qualities, as said above, but 
also of everything which is consequent upon the sensible qual
ities, including motion. Thus sensible matter is said to be the 
subject of motion. 

The dual material role of quantity thus gives rise to the 
distinction between mathematics and natural philosophy. It 
is common to all the mathematical sciences to restrict the 
form to figure, either as it applies to magnitudes or multi
tudes. The diversity of these disciplines, however, remains to 
be explained. 

3. The Primitive Mathematical Sdences 

Two of the mathematical sciences, geometry and arithmetic, 
seem to be more fundamental than the others. Gerninus rec
ognized this, and divided the mathematical disciplines accord
ingly. 16 St. Thomas develops this point and manifests the hi
erarchy more explicitly: 

There are two kinds of sciences. There are some which 
proceed from a principle known by the natural light of the 

14 I.e. their terminations. 
15 In II Physic., Lect. 3, n. 161 (emphasis added). 
16 See page 44 above. 
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intelligence, such as arithmetic and geometry and the like. 
There are others which proceed from principles known by 
the light of a higher science: thus the science of optics pr~
ceeds from principles established by geometry, and music 
from principles established by arithmetic. 17 

For this reason, geometry and arithmetic are often referred 
to as primitive; optics, music and the rest as derivative. The 
former will be considered here, and the latter in section 5 of 
this chapter. 

Although Geminus held that geometry and arithmetic are 
primary, others, like Aristotle, posited the existence of a 'uni
versal science of quantity' ,-presumably algebra, or some
thing like algebra-which is prior to these: 

For one might raise the question whether first philo~ophy 
is universal, or deals with one genus, i.e. some one kind of 
being; for not even the mathematical sciences ~e all alike ~ 
this respect-geometry and astronomy deal Wl~ a cer~ 
particular kind of thing, while universal mathematics applies 
alike to all. 18 

Aristotle goes on to argue that this branch of mathematics 
is prior precisely because it is more universal. But in order to 
see in what way universal mathematics is prior, we must first 
establish in what sense it is more universal. 

A given algebraic equation may have either a geometrical 
or an arithmetic interpretation. In the equation: 

(a + b)2 = a2 + 2ab + b2 

if a and b are taken to be two lines, the superscript to mean 
the square erected on a line and ab to be a rectangle, then this 
expression is equivalent to the following proposition from 
Euclid's Elements: 

17 Summa Theologiae, I, Q. 1, art. 2, corp. 
1s Metaphysics, Bk. E, Chap. I (1026a 23-27). 
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If a straight line be cut at random, the square on the whole is 
equal to the squares on the segments and twice the rectangle 
contained by the segments. 19 

On the other hand, if a and b refer to numbers, the super
script to the operation of multiplying a number by itself, and 
ab to the product of a and b, the equation may be interpreted 
as follows: 

If the sum of any two numbers is multiplied by itself, the 
square number produced is equal to the sum of the two 
square numbers produced by multiplying each of the num
bers by themselves plus twice the product of those two num
bers. 

Nevertheless, the algebraic equation cannot itself be the 
cause of our knowledge of either the geometrical or the arith
metic proposition. This is because the truth of the equation is 
only universal the way in which an analogous word is univer
sal. 20 The symbols in the equation have no common univocal 
meaning. The only way to establish the universal truth of any 
algebraic expression is to present two independent proofs, one 
for numbers and one for lines. 

Thus, with respect to our knowledge, algebra is neither 
prior to geometry and arithmetic, nor is it a mathematical 

19 Elements, Bk. II, Prop. 4· 
2° C£ Posterior Analytics, Bk. I, Chap. 10 (76a 38). 
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sdence in the proper sense of the term. However, insofar as 
the propositions of algebra are more universal than those of 
the mathematical sciences, algebra is prior in the same sense 
that metaphysics or 'first philosophy' is prior to the inferior 
sciences. 21 

Assuming that there is no 'higher science,' that is, that there 
is no science higher than geometry and arithmetic, the ques
tion still remains whether geometry and arithmetic are irre
ducible. Proclus argues that the infinite divisibility of magni
tude precludes such a reduction: 

If there were no infinity, all magnitudes would be com
mensurable and there would be nothing inexpressible or ir
rational, features that are thought to distinguish geometry 
from arithmetic. 22 

What Proclus means here is this. Suppose magnitudes were 
not infinitely divisible, but could be resolved into some mini
mal units. Then every line would contain a fmite whole num
ber of such units. That would mean that there would be some 
whole number ratio between any two given lines, as for ex
ample, between the side of a square and its diagonal. Thus, 
whatever relationship existed among magnitudes, they could 
be expressed by whole numbers and only one science would 
be necessary. 

But some historians of mathematics maintain that Descartes 
succeeded in bridging the gap between these two sciences, al
though there is no consensus on whether he reduced arith
metic to geometry, geometry to arithmetic, or both to alge
bra. It will be illuminating to examine what exactly he did. 

21 For a systematic treatment of the nature of algebra, see E. V. Hunting
ton's "The Fundamental Propositions of Algebra" in Young, pp. IS0-

97· 
22 Proclus, Commentary, Prologue, Part I, 6 (p. 5). 
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4. Cartesian Geometry 

The first sentence of Descartes' La Geometrie23 contains the 
assertion which the remainder of the work serves to justify, 
namely, that any construction required in geometry can, by 
his method, be restated in such a way that the construction de
pends solely on knowing the lengths of certain straight lines. 
His method, however, entails the introduction into geometry 
of operations heretofore undefmed outside of arithmetic. He 
does so "in order to relate it [geometry] as closely as possible 
to numbers [arithmetic]."24 

But Descartes was certainly not the first mathematician to 
exploit the analogy between numbers and lines. Euclid, who 
sharply distinguishes magnitude and multitude in the Elements, 
posits several axioms about addition and subtraction which ap
ply to both 'species' of quantity. 25 Euclid even borrows prop
erly geometrical terms such as 'square' and 'cube' and rede
fines them for arithmetic. 26 Nevertheless, Descartes' use of 
this general principle was original and has proved fruitful in 
solving certain classic problems. 

Descartes observed that some ofEuclid's purely numerical 
defmitions could reasonably be extended to lines. Consider 
the defmition of multiplication: 

A number is said to multiply a number when that which is 
multiplied is added to itself as many times as there are units 
in the other. 27 

23 Some interpreters of Descartes have mistakenly identified the arith
metic operations of La Geometrie with those ofhis Rules (n. 8). It should 
be emphasized that "multiplication" and "division" oflines in the latter 
produce plane figures whereas in the former they produce other lines. 

24 La Geometrie, p. 297 (p. 2). [In all references to this text, numbers 
in parentheses refer to the English translation by Smith and Latham.] 

25 Elements, Bk. I, Common Notions 1-3. 
26 Loc dt., Bk. I, De£ 22; Bk. VII, De£ 18, 19; Bk. XI, De£ 25. 
27 Elements, Bk. VII, De£ 15. 
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By modifying this definition, a number can be said to "mu1-
tiply" a line when that line "is added to itself as many times 
as there are units" in the number. It wou1d be meaningless, 
however, to speak of a line "mu1tiplying" another line since 
the definition, as it stands, depends essentially on the suppo
sition that one of the factors contains some number of units. 
To see how Descartes evades this difficu1ty we must return 
to the purely arithmetical operation of mu1tiplication. 

Whenever one number is mu1tiplied by another to form 
some product, the same ratio is found between the unit and 
the mu1tiplier which exists between the mu1tiplicand and the 
product. If, for example, 3 mu1tiplies 4 to make 12, then: 

I : 3 :: 4 : 12 

Or generally, 

unit : mu1tiplier :: mu1tiplicand: product 

Thus we can state an alternative defmition of mu1tiplica
tion: 

A number is said to multiply a number when a fourth pro
portional is found which is to one of the numbers as the 
other is to unity. 

This defmition eliminates the difficu1ty partially in that it 
does not presuppose that either factor contains units. But the 
defmition is still not applicable to lines since it does presup
pose some unit to which one of the factors has a ratio. 

Descartes solves this last problem by ''taking one line which 
I shall call unity . . . which ordinarily may be taken without 
restriction." 28 By this means, a defmition of mu1tiplication 
can be given for lines which ''relates them so much the more 
to numbers"29 by defining it by analogy with the equivalent 
defmition above: 

28 La Geometrie, p. 297 (p. 2). 
29 Ibid. 
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A line is said to multiply a line when a fourth proportional 
is found which is to one of the lines as the other is to 'unity.' 

Or, to use algebraic notation, if there be lines a and b and 
'unit' line u, then ab is the product when 

u: a:: b: ab 

In order to obtain a similar definition for the division of 
lines, one need only reverse the proportion as follows: 

u: a/b :: b: a 

To redefine the operation of squaring for lines, we begin 
with the Euclidean formu1ation: 

A square number is equal multiplied by equal. 30 

Its equivalent can be stated thus: 

A square number is the third proportional to a given number 
(its root) and unity. 

This can be redefmed for lines as: 

A square line is the third proportional to a given line (its 
root) and 'unity.' 

In algebraic notation, letting a be any line, r? is its square 
when: 

u: a:: a: a2 

The extraction of square roots can similarly be defmed as 
fmding the mean proportional. 

Three differences between the arithmetical and geometrical 
operations are noteworthy: 

First, while not every number is divisible by every other, 
nor does every number have a root, there are no such restric
tions for lines. 

Secondly, while the arithmetical unit is necessarily smaller 
than any given number, the geometrical "unit," since it is de-

30 Elements, Bk. VII, De£ 18. 
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termined arbitrarily, that is, by convention, can be larger than 
either factors or roots and, a fortiori, larger than products or 
squares. 

Finally, while no power higher than the "cube" is defmed 
for numbers in Euclid, there is nothing to prevent the multi
plication oflines by themselves indefmitely, thus making sig
nificant the expressions x\ ~. x6 , etc., which signify increas
ingly larger or smaller lines "in continued proportion."31 

To those unfamiliar with Euclidean geometry, Descartes' 
use of an arbitrary unit may appear to be an innovation. But 
Descartes' unit is strikingly similar to Euclid's arbitrary "ra
tional straight line" supposed throughout Book X of the El
ements: 

Let, then, the assigned straight line be called rational and 
those straight lines which are commensurable with it, whe
ther in length or in square, or in square only, rational, but 
those which are incommensurable with it, irrational. 32 

Even though no line in itself is rational or irrational, once 
the standard has been established, all lines can be designated 
as one or the other according as they are commensurable or 
not with the "rational straight line." Descartes merely takes 
this one step further by defming the particular ratios with the 
standard line. 

It should now be apparent that Descartes neither reduced 
geometry to arithmetic, nor arithmetic to geometry. Nor does 
he invoke algebra except in borrowing some of its symbols 
to which he attaches a precise geometrical significance. In fact, 
Descartes, far from elevating algebra to the level of supreme 
mathematical science, referred to it as "a confused and ob
scure art which perplexes the mind."33 

If then, geometry and arithmetic are the primitive mathe-

31 C£ Elements, Bk. VIII, Prop. 2. 

32 Elements, Bk. X, De£ 3· 
33 Discourse on Method, Part II, p. 550. 
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matical sciences, we must now see how the derivative sciences 
are generated from them. 

5. The Derivative Sdences 

"Nature," as Heraclitus observed, "loves to hide." Hence, she 
cannot be investigated all at once. The philosopher of nature 
must consider one aspect of nature at a time, integrating his 
knowledge as he proceeds. The physicist, for example, begins 
to study the propagation oflight by seeing how beams of light 
are reflected in a mirror or refracted in a lens. 

But even this is too much to deal with at once. Even though 
light only travels in beams, the physicist must consider the 
beam, as it were, one ray at a time. Thus a visible 'solid' 34 in 
the sensible world is reduced, for the sake of simplicity, to a 
'visible' line. This reduction having been made, the physicist 
can then employ all the knowledge offered by geometry about 
lines and the angles formed by them. In this way, a science 
called "optics" is generated which is neither purely natural 
nor purely mathematical. 

St. Thomas describes such sciences as scientiae mediae or 
"middle" sciences: 

Those sciences are called scientiae mediae which take prin
ciples abstracted by the purely mathematical sciences and 
apply them to sensible matter. For example, optics applies 
to the visual line those things which are demonstrated by 
geometry about the abstracted line; and harmonics, that is, 
music, applies to sound those things which arithmetic con
siders about the proportions of numbers; and astronomy 
applies the consideration of geometry and arithmetic to the 
heaven and its parts. 35 

At ftrst glance, the scientiae mediae would not appear at all 
fruitful. Mathematics abstracts from sensible qualities, while 

34 I.e., something with three dimensions; in this context, light is a 'solid'. 
35 In II Physic., Lect. 3, n. 164. 
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the scientiae mediae merely put them back in. But the impor
tant point is that the sensible qualities are introduced only 
where the mathematical form renders them more intelligible. 
It is not fruitful for the physicist to add the qualities "bit
ter" and "sweet" to lines. But adding ''visual" does in fact 
reveal truths about the observable behavior of reflected light 
in nature. Again, adding ''visual'' to numerical ratios does not 
help the musician to understand musical intervals, but adding 
"audible" does. 

As we have seen above, sensible matter is called 'sensible' 
not only because it is subject to sensible qualities, but also 
because it is subject to all the accidents consequent upon sen
sible qualities. One of the most important of these is motion, 
which is added to the mathematicals in both astronomy and 
mechanics. St. Thomas accounts for this as follows: 

By its very nature, motion is not in the category of quantity, 
but it partakes somewhat of the nature of quantity from an
other source, namely, according as the division of motion 
derives from either the division of space or the division of 
the thing subject to motion. So it does not belong to the 
mathematician to treat of motion, although mathematical 
principles can be applied to motion. Therefore, inasmuch 
as the principles of quantity are applied to motion, the nat
ural scientist treats of the division and continuity of mo
tion, as is clear from the Physics.36 And the measurements 
of motion are studied in the sciences intermediate between 
mathematics and natural science: for instance, in the science 
of the moved sphere and in astronomy. 37 

Furthermore, some sciences consider properties which fol
low upon motion without making reference to motion itsel£ 
An example is the study of directed magnitudes or vectors. 38 

36 Physics, Bk. VI, Chap. 4 (234 b 21-235 b s). 
37 In Boethium de Trinitate, Q. 5, art. 3, ad 5· 
38 This term is used here in the original geometric, rather than the 

modem algebraic sense: "At one time, vector quantities were defmed as 
entities which involved magnitude and direction. The situation is now 
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In elementary geometry, if we are required to add two sides 
of a quadrilateral, we need not consider the relative position 
of the two sides. 

a b 

b (a+ b) 

If, however, these magnitudes are directed, say the measures 
of forces acting on a given body, then their sum must take 
the relative position of the lines into account. 

b 

The vector sum in this case would be the total directed force 
acting on the body. Such a sum is called a resultant. Although 
direction is extrinsic to magnitude as such, the addition of it 
is quite advantageous in the study of moving bodies. 

We have noted that the scientiae mediae are neither purely 
mathematical nor purely natural. Yet it remains to determine 
to which branch of the theoretical sciences they belong most 
essentially. 

6. Status cif the Scientiae Mediae 

In considering the status of the scientiae mediae, the Thomistic 
corpus does not seem to be consistent. In his Commentary 
on the Physics, St. Thomas agrees with Aristotle that they are 
closer to natural science: 

somewhat different. . . . Quantities which do not embody a magnitude 
or direction are, nevertheless regarded as 'vectors.'" Leaton, Vedors, p. 10. 
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Although sciences of this sort are intermediate between nat
ural science and mathematics, they are here said by the 
Philosopher to be more natural than mathematical, because 
each thing is named and takes its species from its terminus. 
Hence, since the consideration of these sciences is termi
nated in natural matter, then even though they proceed by 
mathematical principles, they are more natural than mathe
matical sciences. 39 

He goes on to say that: 

Astronomy is a natural science more than a mathematical 
one.40 

St. Thomas even goes so far as to say that the scientiae mediae 
are contrary to mathematics, at least in the manner in which 
they are established: 

Sciences of this sort are established in a way contrary to the 
sciences which are purely mathematical, such as geometry 
or arithmetic. For geometry considers the line which has 
existence in sensible matter, which is the natural line. But 
it does not consider it insofar as it is in that sensible matter 
in virtue of which it is natural, but abstractedly, as was said. 

But optics, conversely, takes the abstracted line which is 
in the consideration of the mathematician and applies it to 
sensible matter and thus treats it not insofar as it is a math
ematical but insofar as it is a physical thing. 41 

If optics, harmonics and the like are truly contrary to pure 
mathematics, we could hardly put them in the same branch 
of theoretical sciences. And since their subjects are defined 
with sensible matter, it seems clear that we should place them 
among the natural sciences. 

However, in his Commentary on Boethius' De Trinitate, St. 
Thomas states just the opposite: 

39 In II Physic., Lect. 3, n. 164. 
40 Loc dt., n. 165. 
41 Loc dt., n. 164. 
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[Those sciences which] apply mathematical principles to 
natural things, for instance, music, astronomy and the like 
... have a closer afFinity to mathematics. 42 

St. Thomas resolves this paradox by distinguishing the for-
mal and material aspects of the subject of a scientia media: 

[In the subject of these sciences], that which is physical is, 
as it were, material, whereas that which is mathematical is 
as it were, formal. 43 ' 

And since that which is formal is of most account, it 
follows that those sciences which draw conclusions about 
physical matter from mathematical principles, are reckoned 
rather among the mathematical sciences, though, as to their 
matter, they have more in common with physical sciences; 
and for this reason it is stated in the Physics (ii, 2) that they 
are more akin to physics. 44 

Recalling distinctions made above, we can state more pre
cisely what this means. Quantity is the subject of both figure 
(qua corporeal matter) and of the sensible qualities (qua sen
sible matter). If quantity is allowed to take on one of those 
sensible qualities or their consequents, while still remaining 
material with respect to figure, the composite can be the sub
ject of a scientia media. 

In spite ofbeing awkward ways to look at the natural world, 
these disciplines are powerful tools for the natural scientist 
who can successively subject the various sensible qualities, 
motions, etc., to mathematical forms, thereby illuminating 
certain truths which would otherwise have been obscure. 
Nevertheless, it is easy to see how the enterprise could mis
lead the unwary if the proper distinctions are not made. 

It is now apparent that the mathematical sciences can be 
ordered by a fourfold division. On the one hand, we can dis
tinguish between primitive and derivative sciences. On the 

42 In Boethium de Trinitate, Q. 5, art. 3, ad 6. 
43 Ibid. 
44 Summa Theologiae, II-II, Q. 9, art. 2, ad 3. 
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other, we can distinguish those sciences dealing with discrete 
quantity from those dealing with continuous quantity: 

PRIMITIVE: 

DERIVATIVE: 

CONTINUOUS 

GEOMETRY 

ASTRONOMY, ETC. 

DISCRETE 

ARITHMETIC 

MUSIC 

If astronomy were the only possible science derived from 
geometry, the Pythagorean division mentioned above would 
be exhaustive. However, optics, mechanics, etc., would also 
fall in this category. Why then were these not included in the 
quadrivium? 

Perhaps the reason lies in the close association of these four 
disciplines with the order of traditional liberal education more 
than with their intrinsic character. The following explanation 
seems quite plausible: 

Astronomy and music are principal in that division, since 
geometry is ordered to the former, and arithmetic to the 
latter. Now it is reasonable to suggest that astronomy is a 
pre-figuration of the theoretical sciences generally, where 
knowledge is the end, since the stars are not things we can 
do something about-we can only learn about them. And 
the stars certainly seem to be, and were originally thought 
to be of a higher order than man, immortal and even di
vine. Furthermore, theoretical studies are ultimately con
cerned with the order of the universe as a whole, and it is 
from star-gazing and astronomy that we first begin to ap
prehend and wonder about that order. And the image of 
the astronomer, the man who doesn't see the things at his 
feet because he is looking up, forcefully suggests that liberal 
education concerns things higher than man. 

This is perhaps the reason why mechanics, as interesting 
as it is, is not one of the liberal arts. For in mechanics, ge
ometry is applied to certain problems which are sub-lunar 
and on our own level, so to speak. Thus it does not express 
the fundamental orientation of the human mind, which is 
toward things better than man. Now whether the stars are 
really as the ancients supposed is not important for this argu-
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ment; what is important is that they made astronomy rather 
than mechanics a liberal art. 

The science of music, on the other hand, would seem to 
pre-figure the practical or moral sciences, which concern the 
ordering of man's soul. For inasmuch as music imitates the 
passions of the soul, the discovery that arithmetical princi
ples may be applied to musical tones suggests that a parallel 
order exists within the passions themselves. One is thereby 
led to suppose that the inclinations and affections can be 
ordered by reason, and that it is possible to understand how 
they ought to be ordered. However, the fact that the science 
of music is completely theoretical in mode also suggests that 
the basis of man's moral life is given by nature, rather than 
instituted by man himsel£ 45 

III. Definition in General 

I . The Necessity of Definition 

All theoretical science1 begins with knowledge which is prior 
to science, 2 with concepts which are common to all men. 
These conceptions proceed from a natural inclination of the 
intellect to its object, antecedent to any deliberate intention 
to know. This is not to say that the concepts are innate, but 
rather that the disposition and power to know reality through 
them is natural. 

Although the certitude of such concepts is unimpeachable, 
not all are equally distinct, as Plato observes in the Phaedrus: 

There are some [ideas] about which we all agree, and others 
about which we are at variance. . .. When someone utters 
the word 'iron' or 'silver' we all have the same object before 
our minds .... But what about the words 'just' and 'good'? 

45 Berquist, "Liberal Education and the Humanities," p. s. 
1 I.e. episteme or sdentia. 
2 C£ Posterior Analytics, Bk. I, Chap. I (71a I-z). 



il~'' 

DEFINITION IN GEOMETRY 

Don't we diverge and dispute not only with one another 
but with our own selves?3 

Such "disputable" concepts are apparently what Aristotle 
refers to in the opening paragraph of his Physics. He points 
out that "what is plain and obvious at first is rather what is 
corifused."4 St. Thomas, commenting on the passage, explains 
why such confusion is natural to the intellect: 

Those things are here called 'confused' which contain in 
themselves something potential and indistinct. And because 
to know something indistinctly is a mean between pure po
tency and perfect act, so it is that while our intellect pr~
ceeds from potency to act, it knows the confused before 1t 
knows the distinct. But it has complete science in act when 
it arrives, through resolution, at a distinct knowledge of the 
principles and elements. And this is the reason why the con
fused is known by us before the distinct. 5 

Thus the intellect can, by "disputing with itself," arrive at a 
more perfect understanding. But since this cannot be accom
plished in a single act, several concepts must be composed 
into one whole. And this we call a dtjinition. 6 

For that which is defmed is related to the things defming it 
as a kind of integral whole, insofar as the things defining it 
are in act in that which is defined. But he who apprehends 
a name, for example, man or drcle, does not at once distin
guish the defining principles. Whence it is that the name 
is, as it were, a sort of whole and is indistinct, whereas the 
definition divides into singulars, i.e., distinctly sets forth 
the principles of what is defined. 7 

It is clear then that a 'defining principle' is related to the 
thing defined as part to whole. But it is also related as prior 
to posterior, as Aristotle points out: 

3 Phaedrus, (263 a) p. 508. 
4 Physics, Bk. I, Chap. I (I84a 22) (emphasis added). 
5 In I Physic., Lect. I, n. 7 
6 Greek: OQO~ [horos], lit. "boundary" or "landmark." 
7 In I Physic., Lect. I, n. IO. 
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For the reason why the definition is rendered is to make 
known the term stated, and we make things known by tak
ing not any random terms, but such as are prior and more 
intelligible. Accordingly, it is clear that a man who does not 
defme through terms of this kind has not defmed at all. 8 

Even mathematics, which of all the branches of theoretical 
science affords the most clarity, demands the subordination 
of posterior to prior among its concepts: 

It appears also in mathematics that ... the most primary of 
the elementary principles are without exception very easy 
to show if the definitions involved e.g., the nature of a line 
or of a circle be laid down; ... If on the other hand, the 
definitions of the starting points be not laid down, to show 
them is difficult and may even prove impossible. 9 

The preceding texts have been set forth to reveal how defi
nition is related to the thing defmed. We should next consider 
the relation of definition to science as a whole. 

2. Principles of Science 

Aristotle begins the Posterior Analytics by an examination of 
the first principles of discursive knowledge: 

All instruction given or received by way of argument pro
ceeds from pre-existent knowledge. . . . The pre-existent 
knowledge required is of two kinds. In some cases admis
sion of the fact must be assumed, in others, comprehension 
of the meaning of the term used, and sometimes both as
sumptions are essential. 10 

While Aristotle's observations apply to knowledge generally, 
we are here concerned with their application to demonstra
tive science. 

8 Topics, Bk. VI, Chap. 4 (I4Ia 27-32) (emphasis added). 
9 Op. dt., Bk. VII, Chap. 3 (158b 29, 36-39). 

10 Posterior Analytics, Bk. I, Chap. I (7Ia I, n-I3). 
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Mter showing that the first principles must be undemon
strable and necessary, he distinguishes the various kinds of 
first principle. He first distinguishes between proper and com
mon: 

Now of the premises used in demonstrative sciences, some 
are peculiar to each science and others common. 11 

Examples of common first principles are the "Common No
tions" in Book I ofEuclid's Elements, since they are applicable 
both to geometry and arithmetic. The proper principles are 
further divided into the genus subjectum, the defmitions and 
the primary objects. He considers the genus subjectum first: 

The things peculiar to the science, the existence as well as 
the meaning of which must be assumed, are the things with 
reference to which the science investigates the essential at
tributes [i.e. the genus subjectum] . ... With these things it is 
assumed that they exist and that they are of such and such 
a nature. 12 

For example, the geometer begins his study with the assump
tion that magnitude exists and that it is continuous quantity. 
Similarly, the arithmetician understands number to exist and 
to be discrete quantity. Such premises, however, need not be 
explicitly stated: 

There need not be any supposition as to the existence of 
the genus, if it is manifest that it exists. 13 

The next sort of principle is the definition, in which the 
essence is stated through a particular manifestation or attribute 
(passio) of the genus.14 The definition neither affirms nor de
nies the existence of the thing defmed, nor the inherence of 

11 Op. cit., Bk. I, Chap. IO (76a 37). 
12 Loc cit., (76b 3-6). 
13 Loc cit., (76b I7-I8) · 
14 Most properly, this would take the form of a specific difference. Less 

properly, it could be a commensurably universal property, accident, set 
of accidents or unique description. See sect. 4 infra. 
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the defmition in any subject. All that is required is that the 
defmed passio be understood. 

Of the things defmed, those whose existence is certain, yet 
undemonstrable, are the primary objects. Examples of these are 
the point, line and circle in elementary geometry and the unit 
in arithmetic. The existence of these objects is ascertained by 
postulates. Other objects, such as the triangle, are shown to 
exist by construction, i.e. by means of the primary objects. 

It is worth noting how much emphasis Aristotle places on 
the fact that definitions neither affirm nor deny the existence 
of the things defmed. Consider the following texts: 

(i) Arithmetic assumes the meaning of odd and even, 
"square" and "cube," geometry that of incommensurable, 
or of deflection or verging15 of lines whereas the existence 
of these attributes is demonstrated. 16 

(ii) Defmitions ... not hypotheses, for they do not assert 
the existence or non-existence of anything. 17 

(iii) The definition of man and the fact that a man exists 
are different things. 18 

(iv) What is meant by the word 'triangle' the geometer 
assumes, but [that it exists] he has to prove. 19 

(v) Definition does not prove that the thing defined ex
ists.20 

Furthermore, we should examine how the doctrine pre
sented here is actually put into practice in Euclid's Elements. 
For this leads us to a difficulty, the solution of which is rather 
illuminating. 

15 C£ Heath, Euclid, Vol. I, p. ISO: Heath notes that neither "deflec
tion" nor ''verging" is "a geometrical figure, or an attribute of such a 
figure, or a part of a figure, but a technical term used to describe a certain 
problem. Euclid does not deftne such things." 

16 Posterior Analytics, Bk. I, Chap. IO (76b 8-g). 
17 Op. cit., Bk. I, Chap. Io (76b 35-6). 
18 Op. cit., Bk. II, Chap. 7 (92b 10). 
19 Loc cit., Bk. II, Chap. 7 (92b I6-I7). 
20 Loc cit., Bk. II, Chap. 7 (92b I9)· 
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Let us take as an example the notion of "parallel." Euclid 
lays out the definition at the beginning of Book I: 

Parallel straight lines are straight lines which, being in the 
same plane and being produced indefinitely in both direc
tions, do not meet one another in either direction. 21 

In a series of propositions in Book I, Euclid proves a num
ber of things about parallel lines. Propositions 27 and 28 show 
under which conditions lines are paralleL In both cases, the 
lines are supposed cut by a transversal. The former shows that 
the equality of the alternate angles implies parallels. The latter 
shows two other conditions which imply them: the equality 
of an exterior angle with an interior opposite one, and the 
equality of the interior angles with tvyo right angles. Thus, in 
the two propositions, three sufficient conditions for parallels 
are shown. Proposition 29 then proves that these three condi
tions are also necessary, i.e., they are necessary consequents of 
parallel lines being cut by a transversal. Proposition 30 shows 
that straight lines parallel to the same straight line are parallel 
to one another. 

What is curious here is that parallel lines have not heretofore 
been proved to exist. Euclid does not construct them until 
Proposition 31. It appears that the four previous propositions 
must be merely hypothetical. One would think that Euclid, 
in the interests of scientific rigor, should have constructed 
parallel lines first using only the definition stated above. 

The paradox is resolved, however, when the method of 
proving existence is more carefully examined, as St. Thomas 
explains: 

When the existence of a cause is demonstrated from an ef
fect, this effect takes the place of the definition of the cause 
in proof of the cause's existence. . . . 22 

Let us see how this applies in the case at hand. 

21 Elements, Bk. I, De£ 23. 
22 Summa Theologiae, I, Q. 2, art. 2, ad 2. 
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Euclid shows in Propositions 27 and 29 that a formal effect 
of parallel lines, namely, the equality of the alternate angles, 
is commensurately universal with the parallel lines, its cause. 
When, in Proposition 31, he constructs two lines which ex
hibit this effect, he can show immediately that the cause is 
present, i.e., that the lines are parallel. Thus he proves the exis
tence of parallel lines, not immediately but mediately, through 
one of the definition's formal effects. 23 

But St. Thomas, in the same place, generates another para
dox when he says: 

The question of essence follows on the question of exis
tence.24 

This notion seems to suggest that Euclid should have proved 
the existence of parallels even before he stated what they are. 

The solution of this difficulty lies in the distinction be
tween real and nominal definition, as we shall see below. But 
a prior distinction is necessary, namely that between the order 
if discovery and the order of exposition. 

3 . Orders if Discovery and Exposition 

Geometry, historically, does not begin with Euclid. Rather, 
Euclid placed the existing geometrical knowledge into scien
tific order, as Proclus says: 

. . . to make perfect the understanding of the learner in re
gard to the whole of geometry. 25 

In so doing, Euclid evaded the merely probable and sometimes 
fallacious 26 arguments advanced by his predecessors. Euclid's 
work has even been lauded as the model and inspiration for 

23 C£ Heath, Euclid, VoL I, p. 316; Heath points out that Euclid by 
proving Prop. 30 first, excludes the possibility of there being more than 
one parallel line through a given point. 

24 Summa Theologiae, I, Q. 2, art. 2, ad 2. 
25 Proclus, Commentary, p. 68. 
26 C£ Heath, Euclid, VoL I, p. 202. 
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all subsequent attempts to systematize human knowledge, as 
cine modern scientist notes: 

We reverence ancient Greece as the cradle of Western sci
ence. Here for the first time the world witnessed the miracle 
of a logical system which proceeded from step to step with 
such precision that every one of its deduced propositions 
was absolutely indisputable-! refer to Euclid's geometry. 
This admirable triumph of reasoning gave the human in
tellect the necessary confidence in itself for its subsequent 
achievement. 27 

Yet the order in which Euclid proves his propositions is 
not the order in which those propositions were discovered. 
Pythagoras, for example, who antedates Euclid by almost three 
hundred years, is credited with discovering the following the
orem from the Elements: 

In right-angled triangles, the square on the side subtending 
the right angle is equal to the squares on the sides containing 
the right angle. 28 

By assigning certain whole numbers as measures of the 
sides, one can easily see that the proposition is true in at least 
two cases: 

3~ 
4 12 

9 + 16 = 25 25 + 144 = 169 
(3x3) + (4x4) = (5x5) (5x5) + (12x12) = (13x13) 

These cases generate a suspicion that the proposition holds 
universally, but this requires further proof: 

27 Albert Einstein, "On the Method of Theoretical Physics," p. 13. 
28 Elements, Bk. I, Prop. 47· 
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Beginning with any right triangle with sides a and b, and 
hypotenuse c, construct squares on a and b and complete the 
square with side (a+ b). Construct another square with side (a 
+ b), this time containing the square on c, as shown. Thus the 
two squares are equal and each contain the original triangle 
four times. Subtracting these triangles from each square, the 
remainders are equal. Thus the square on a plus the square 
on b equals the square on c, the hypotenuse, which was to be 
proved. 

This method of proof, although persuasive, lacks the rigor 
of scientific demonstration because it relies in large measure 
on the imagination. In contrast, Euclid's proof occurs as the 
forty-seventh proposition of the first book and depends on 
most, if not all, of the preceding forty-six propositions. Yet 
the method above, or one like it, was probably the first at
tempt at a theoretical proof of this particular problem. 

It is likely that most of the propositions of geometry have 
undergone a similar development from mere suspicion or ed
ucated guess to formal proo£ Thus we can discern a certain 
order of discovery by which the human Inind advances toward 
scientific knowledge. This order is distinct from, and often, 
opposed to, the order of exposition by which one who already 
has science, Euclid for example, can impart his knowledge to 
another. 29 

29 C£ Republic, Bk. VI (510b) p. 745; Plato here makes a somewhat 
obscure reference to this distinction: "There is one section of it [the 
divided line] which the soul is compelled to investigate ... by means of 
assumptions from which it proceeds not up to a ftrst principle, but down 
to a conclusion, while there is another section in which it advances from 
its assumptions to a beginning or principle that transcends assumption, 

7I 
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This distinction is important for our investigation of defmi
tion. For we have said above that definition must be "through 
terms that are prior and more intelligible." Optimally, follow
ing the order of exposition, we will defme by what is prior 
absolutely. But it is often necessary to follow the order of dis
covery and defme by what is prior with respect to us. Aristotle 
provides an illustration: 

Absolutely, the prior is more intelligible than the posterior, 
a point, for instance, than a line, a line than a plane, and a 
plane than a solid. . . . 

Whereas to us it sometimes happens that the converse 
is the case: for the solid falls under perception most of all 
-more than a plane and a plane more than a line, and a 
line more than a point: for most people learn things like the 
former earlier than the latter. 30 

Thus defmitions are sometimes given which defme by what 
is scientifically posterior: 

Among defmitions of this kind are those of a point, a line, 
and a plane, all of which explain the prior by the posterior; 
for they say that a point is the limit of a line, the line of a 
plane, the plane of a solid. 31 

For this reason, Euclid supplements the scientific defmi
tions of point, line, surface and solid by a description more 
proportionate to a beginner in the science: 

(i) A point is that which has no part. 
(ii) A line is breadthless length. 

[defmition] 
[definition] 
[description] (iii) The extremities of a line are points. 

(iv) A suiface is that which has length 
and breadth only. [definition] 

(v) The extremities of a surface are lines. [description] 

and in which it makes no use of images . . . relying on ideas only and 
progressing systematically through ideas." 

30 Topics, Bk. VI, Chap. 4 (I4Ib 6-13). 
31 Loc dt., (J4Ib 19-22). 
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(vi) A solid is that which has length, 
breadth and depth. 

(vii) An extremity of a solid is a surface. 32 

[defmition] 
[description] 

The distinction between the orders of discovery and expo
sition having been noted, let us turn to the distinction be
tween real and nominal defmition. 

4. Real and Nominal Definition 

According to Aristotle, definition properly speaking is "an in
demonstrable positing of essential nature."33 But in the same 
chapter, Aristotle refers to another kind of definition which 
is ''a statement of the meaning of the name or of equivalent 
nominal formula [logos heteros onomatodes]". 34 The first is called 
real, the second, nominal defmition. The need for the latter is 
due to one of the two defects in our knowledge: either igno
rance of the existence of the thing defined, or ignorance of 
its essence. 

If we do not yet know whether a thing exists, we cannot 
posit anything about what it is. There can be no discussion, 
for example, of whether unicorns can have more than one 
horn. Since no unicorns are known to exist, we can only re
fer the questioner to what is generally meant by the name, an 
animal which, among other things, has only one horn. This 
is the reason for the statement of St. Thomas quoted (in part) 
above: 

In order to prove the existence of anything, it is necessary 
to accept as a middle term the meaning if the word, and not 
its essence, for the question of its essence follows on the 
question of its existence. 35 

32 Elements, Bk. I, Defs. I, 2, 3, 5, 6; Bk. XI, Defs. I, 2. 
33 Posterior Analytics, Bk. II, Chap. 10 (94a n-2). 
34 Loc dt., (93b 29-30). 
35 Summa Theologiae, I, Q. 2, art. 2, ad 2 (emphasis added). 
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Once the existence of something, say a unicorn, has been 
established, it becomes possible to settle questions about its 
attributes by reference to its essence rather than to the mean
ing of its name. Until the existence of the unicorn is shown, 
it is impossible to have anything more than a nominal defi
nition. However, when something nominally defmed can be 
proved to exist, as in geometry, the nominal definition may 
become real. 

It should be noted that if the essential nature has been cor
rectly assigned in the nominal definition, the transformation 
to a real definition is only formal, i.e., the terms of the defi
nition are not altered. A material change is occasioned only 
when an initial ignorance of the thing's essence needs to be 
rectified, as we shall see. 

It is possible to have some notion of a thing without know-
ing its essence perfectly, as St. Thomas argues: 

If no other notion could be had of a thing except the defini
tion, it would be impossible for us to know that some thing 
is, without knowing the essence of it .... For in regard to a 
thing completely unknown to us, we cannot know if it is or 
not. But we do find some other notion of a thing besides the 
defmition, namely a notion which explains the signification 
of the name. 36 

In cases of this kind, it is possible to use the notion by which 
the thing is known as a provisional defmition and argue from 
it to its cause and from the cause to a proper defmition. To 
use an example from the De Anima, 37 anger can be defined 
nominally as "the appetite for returning pain for pain" or "a 
boiling of the blood surrounding the heart." However, the cause 
of the boiling is "the appetite for returning pain for pain." Thus 
we have advanced toward a more proper definition of anger. 

The distinction between real and nominal defmition is of no 
small importance. Failing to make this distinction, some philoso-

36 In II Post. Anal., Lect. 8, n. 484 (emphasis added). 
37 C£ De Anima, Bk. I, Chap. I (403a zs-32). 
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phers, both ancient and modem, have asserted with disastrous 
consequences that all defmitions are nominal. 

Thomas Hobbes provides one modem example: 

And therefore in geometry ... men begin at settling the sig
nifications of their words: which settling of significations they 
call definitions, and place them in the beginning of their reck
oning.3s 

This position leads to a serious paradox, for which J. S. Mill 
takes Hobbes to task: 

It had been handed down from Aristotle, and probably from 
earlier times, as an obvious truth, that the science of geome
try is deduced from definitions. This, so long as a definition 
was considered to be a proposition "unfolding the nature 
of the thing," did well enough. But Hobbes followed and 
rejected utterly the notion that a defmition declares the na
ture of the thing, or does anything but state the meaning 
of a name; yet he continued to affirm as broadly as any of 
his predecessors that the agxaL [ archai], principia, or original 
preinises of mathematics, and even of all science, are defi
nitions; producing the singular paradox that systems of sci-

38 Leviathan, Part I, Chap. 4; The absurdity of Hobbes' position when 
carried to its logical conclusion is accurately portrayed in Chapter VI 
of Lewis Carroll's Through the Looking-Glass, when Alice and Humpty 
Dumpty discuss the signification of'glory': 

"There's 'glory' for you." 
"I don't know what you mean by 'glory'," said Alice. 
Humpty Dumpty smiled contemptuously. "Of course you don't 

till I tell you. I meant 'there's a nice knock-down argument for you." 
"But 'glory' doesn't mean 'a nice knock-down argument'," Al

ice objected. 
"When I use a word," Humpty Dumpty said, in rather a scorn

ful tone, "it means just what I choose it to mean-neither more 
nor less." 

"The question is," said Alice, "whether you can make words 
mean so many different things. 

"The question is," said Humpty Dumpty, "which is to be the 
master-that's all.'' 
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entifi.c truth, nay, all truths whatever at which we arrive by 
reasoning, are deduced from the arbitrary conventions of 
mankind concerning the significations of words. 39 

It is interesting to note that Mill's argument closely resem
bles the last of three refutations which Aristotle advanced against 
Hobbes' ancient counterparts. 40 Both argue that an absurdity 
results from maintaining both of the following propositions: 

(i) All definitions are nominal. 
(ii) The first principles of every science are definitions. 

Aristotle rejects the first proposition. Mill, on the other hand, 
rejects the second, thereby perpetuating and magnifying the 
original error of Hobbes. 41 

Let this suffice for an examination of the methods of defin
ing common to the sciences. Although we have taken exam
ples from mathematics, no attention has been given to the 
methods peculiar to mathematics itself. Therefore, the locus 
and the use of motion in mathematical definition will be con
sidered in the following chapter. 

IV. Definition in Geometry 

r . Dc:finition by the Locus 

Because the nature of the continuous involves the infinite, 
there is always something intriguing and perplexing in com
ing to grips with it. A sign of this is the fascination which 
thinkers of every age have displayed for Zeno's paradoxes. 

39 J. S. Mill, System of Logic, Bk. I, Chap. 8 (quoted in Heath, Euclid, 
Vol. I, p. 145). 

4° C£ Posterior Analytics, Bk. II, Chap. 7 (92b 32); see also In II Post. 
Anal., Lect. 6, n. 468. 

41 C£ Mortimer J. Adler, "Little Errors in the Beginning," Pro£ 
Adler here shows how errors of this kind run rampant through mod
ern philosophy. 
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For this reason, one of the most interesting concepts in 
geometry is that of the locus, for here the infmity of magni
tude clearly manifests itself, as will be evident in the exam
ples which follow. Before examining the use of the locus in 
defmition, we should first investigate the locus itsel£ 

First, we will consider an important proposition from Eu
clid: c 

E 

"To fmd the center of a given circle: 1 

Let ABC be the given circle; thus it is required to find 
the center of the circle ABC. 

Let a straight line AB be drawn through it at random, and 
let it be bisected at D; from D let DC be drawn at right 
angles to AB and let it be drawn through to E; let CE be 
bisected at F; I say that F is the center of the circle ABC. 

For suppose it is not ... " 

Evidently, what Euclid intends here is to prove that F is the 
center of the circle by reductio ad absurdum. 2 It seems as though 
he would have to go through the remaining points, one by 
one, to show that they cannot be the center. But since there 
is a potentially infmite number of points in the circle besides 
F, such a task would obviously be impossible. Observe how 
Euclid in fact concludes the proof: 

1 Elements, Bk. III, Prop. 1. 

2 He can immediately exclude all the other points on CE, since, if the 
center is anywhere on the line, it will be at the point ofbisection, F. 
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E 

I say that F is the center of the circle ABC. 
For suppose that it is not, but, if possible, let G be the 

center, and let GA, GD, GB be joined. 
Then since AD is equal to DB, and DG is common, the 

two sides AD, DG are equal to the two sides BD, DG re
spectively; and the base GA is equal to the base GB, for 
they are radii; therefore the angle ADG is equal to the angle 
GDB. (I. 8) 

But, when a straight line set up on a straight line makes 
the adjacent angles equal to one another, each of the equal 
angles is right; (I. De£ 10) 

therefore the angle GDB is right. 
But the angle FDB is also right; therefore the angle FDB 

is equal to the angle GDB, the greater to the less: which is 
impossible. 

Therefore G is not the center of the circle ABC. 
Similarly we can prove that neither is any other point ex

cept F. 
Therefore the point F is the center of the circle ABC. 

Q.E.F. 

What is marvelous about this proposition is that Euclid, at 
a stroke, has not only excluded one point G, but all such points 
G, from being the center. The validity of the proof depends 
upon the feature common to all the possible points G, namely, 
that the line drawn from G to D makes an oblique angle with 
the line AB. 

Whenever all the points in a given area or on a given line 
share such a common feature, the area or line is called the locus 
(Latin for 'place') of all such points. In the example above, the 
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locus of all points G is the area within the circle, excluding 
the line CE. 

Starting with a locus, any number of its points may be 
found. But it is impossible to construct3 a locus from its 
points, no matter how many of them we begin with. The 
locus must first be constructed by means independent of its 
points. Then it must be shown that it contains all the desired 
points and only such points. The method of constructing a 
locus will be considered in subsequent chapters. 

The simplest example of a locus used in a definition is that 
of the circle itself: 

A drcle is a plane figure contained by one line [ circumfer
ence] such that all the straight lines [radii] falling upon it 
from one point [center] among those lying within the figure 
are equal to one another. 4 

It is noteworthy, first of all, that this is not a proper but a 
nominal definition. It defmes the circle by its parts and their 
relation, which relation is clearly posterior to the whole. In 
other words, we are not given its essence, but an essential 
property through which the geometer can demonstrate other 
properties. 

Secondly, it is actually the circumference, 5 not the circle, which 
is being defmed by a locus, even though this is not explicitly 
stated. 

Since the radii are unlimited in number, their end points 
are unlimited in number. But all such points, by definition, 
must lie on the circumference. The circumference, then, is 
the locus of these points. 

3 I mean construct in the classical Euclidean sense. In modern analytical 
geometry, an equation would suffice to produce, by flat, any desired 
area. The expression x 2 + y2 ::::; r 2 , for example, "produces" a circle. 

4 Elements, Bk. I, De£ 15. 
5 Modern usage of the term "circle" often, though not always, corre

sponds to Euclid's definition of the circumference, and even Euclid uses 
the word in that sense. C£ Bk. III, Prop. IO; see also Smith, History of 
Mathematics, Vol. II, p. 278, s.v. "Circle." 
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Compare Euclid's definition with a more current one which, 
although inferior from the point of view of elementary ge
ometry, does bring out more explicitly the notion oflocus: 

[A circle is] a closed plane curve every point of which is 
equidistant from a fixed point within the curve. 6 

Curiously, neither definition invokes shape, that is, the 
fourth 'species' of quality. The boundary or termination of 
quantity is denoted here rather by relation or position. Pro
clus even defmes a locus as "a position of a line or surface 
producing one and the same property." 7 Of course, in order 
for the line to have this property, it must also have a certain 
shape. But what is important here is that shape is not included 
in the definition. Hence, the locus shows what was pointed 
out before, namely, that quality is not considered in geome
try as such, but only insofar as it designates the termination of 
quantity. 

This introduction should suffice to make the basic notion 
of the locus clear. The more difficult cases will be taken up 
in the following sections. 

2. ((Geometrical" and (Mechanical" Curves 

At the beginning of his treatment of curved lines in the second 
book of La Geometrie, Descartes brings up the distinction be
tween "geometrical" and "mechanical" curves, to which we 
ought to give some consideration. The ''mechanical'' curves 
introduce the controversy over the admissibility of motion 
into geometry. 

Descartes ftrst points out that the ancients divided geomet
rical constructions into three kinds, plane, solid, and linear, ac
cording to the kinds of curves by means of which the desired 
construction is accomplished. In the frrst case, only straight 

6 Webster's Third International Dictionary, Vol. II, p. 408, s.v. "Circle." 
7 Proclus, Commentary, pp. 394-95 quoted in Heath, Euclid, Vol. I, p. 

329 (emphasis added); c£ Categories (sa 15-29). 
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lines and circles are required; in the second, conic sections 
must be used as well. 8 Thus, the inscription of the cube in 
a sphere is a plane construction, even though the figure con
structed is a solid. On the other hand, the duplication of the 
cube9 is a solid construction since it requires the intersection 
of two parabolas in addition to the use of straight lines and 
circles. The origin of these technical terms is not altogether 
clear. 

Concerning the third kind of construction, Descartes here 
remarks only that they require lines which are ''more com
plex." Pappus, however, in treating the same threefold divi
sion, provides some interesting observations: 

There remains a third class which is called linear because 
other "lines" than those I have just described [straight lines, 
circles, conic sections], having diverse and more involved 
origins, are required for their construction. Such lines are 
the spiral, the quadratix, the conchoid and the dssoid, all of 
which have many important properties. 10 

In order to understand this third category of construction, it 
will be necessary to see in what way each of these lines is 
"more complex" or "more involved." 

The Spiral (Archimedes, third century, B.c.) 
Although the Archimedean spiral, or helix, is not the only 

kind of spiral, it is the most simple. We will take the defmi
tion given by Archimedes himself: 

If a straight line drawn in a plane revolve at a uniform rate 
about one extremity which remains fixed and return to the 
position from which it started, and if, at the same time as 
the line revolves, a point move at a uniform rate along the 
straight line beginning from the extremity which remains 

8 These terms may cause some confusion. 
9 C£ Smith, History cifMathematics, Vol. ii, p. 313. 

10 Pappi Alexandrini Mathematicae Collectiones, Vol. I, Bk. III, Prop. s 
(quoted in Smith and Latham, Le Geometrie, p. 40). 
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ftxed, the point will describe a spiral in the planeY (see 
Fig. I) 

~ 
~A" 

A 0 Q A 

Fig. I The Spiral Fig. 2 The Quadratix 

The Quadratix (Hippias, ftfth century, B.c.) 
The quadratix was developed in order to square the circle. 

The classic problem, of course, was to do so using straight 
lines and circles only. This curve is described as follows: 

In this ftgure, X is any point on the quadrant AC. As the 
radius OX revolves at a uniform rate from the position OC 
to the position OA, the line MN moves at a uniform rate 
from position CB to the position OA, always remaining 
parallel to OA. Then the locus ofP, the intersection of OX 
and MN, is a curve CQ (the quadratix). 12 (see Fig. 2) 

The Conchoid (Nichomedes, second century, B.c.) 
The conchoid solves the problem of trisecting the angle, 

again without the classical restrictions. It is described as fol
lows: 

We take a ftxed point 0 which is d distant from a ftxed line 
AB, and we draw OX parallel to AB and OY perpendicular 
to OX. We then take any line OA through 0, and on OA 
produced, lay off AP=AP' =k, a constant. Then the locus of 
points P and P' is a conchoidY (see Fig. 3) 

11 On Spirals, De£ I. 
12 History cif Mathematics, Vol, II., p. 300. 
13 Loc dt., Vol., II, pp. 298-99. 
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Fig. 3 The Conchoid Fig. 4 The Cissoid 
The Cissoid (Diodes, second century, B.c.) 
The cissoid was developed to fmd the two geometric means 

between two given magnitudes, or, if one of these magnitudes 
is the Cartesian "unit," to fmd the cubic root of the other 
magnitude. The cubic root, in turn, is used in the classic prob
lem of duplicating the cube. If the side of the cube to be du
plicated is the unit, then a cube constructed with the cubic 
root of 2 as a side will have a volume double the original 
cube. 

The cissoid is described as follows: 

Let AC, BD be diameters at right angles in the circle with 
center 0. Let E, F be points on the quadrants BC, BAre
spectively, such that the arcs BE, BF are equal. Draw EG, 
FH perpendicular to CA. Join AE, and let P be its intersec
tion with FH. 

The cissoid is the locus of all the points P corresponding 
to different positions of E on the quadrant BC and ofF at 
an equal distance from B along the arc BA. 14 (see Fig. 4) 

Motion is explicidy mentioned only in the definitions of 
the first two curves. Nevertheless, the generation of all four 
would seem to require at least one motion. In the case of the 
spiral and quadratix, two independent but simultaneous uni
form motions are required for the generation of the curves. 
In the cissoid, two independent motions are required, but 
providing they are simultaneous, they need not be uniform. 

14 Heath, Euclid, Vol. I, p. 164. 
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Finally, the conchoid requires only one motion, that of the 
line AP, and thus uniformity is irrelevant. 

One is therefore led to believe that the constructions in
volving such complex lines constitute a distinct type because 
these lines, unlike the circle or the conic sections, depend on 
motion for their generation. They would therefore belong to 
geometry only derivatively, being more properly considered 
in one of the scientiae mediae. If this is the case, it is clear why 
the ancients would have called the complex curves "mechan
ical." 

Yet Descartes claims not to know why the ancients distin-
guished the complex curves in this way: 

And I do not understand why the [ancients] named them 
[the complex curves] mechanical rather than geometrical. 15 

Nevertheless, he advances five possible interpretations of 
"mechanical," none of which, in his opinion, are sufficient 
grounds for excluding all the complex curves from geome
try. Curiously, the interpretation suggested above is not one 
of those considered. 16 In stating the first three interpretations, 
he argues that none of them is what the ancients had in mind. 

The first interpretation he gives is apparently based upon 
the root of the word "mechanical": 

15 La Geometrie, p. 315 (my translation). 
16 One might conjecture that the idea of a sdentia media in St. Thomas' 

sense of the term had been lost in the decadence of fifteenth and sixteenth 
century scholasticism, and hence, would not have occurred to Descartes. 
But the notion of mechanics as the application of pure geometry to phys
ical objects survived in learned circles well past the publication of La 
Geometrie in 1637. Robert Boyle wrote in 1671: "I do not here take the 
term, Mechanicks, in that stricter and more proper sense, wherein it is 
wont to be taken, when 'tis used only to Signify the Doctrine about the 
Moving Powers (as the Beam, the Leaver, the Screws, and the Wedg) 
... but ... in a larger sense, for those Disciplines that consist of the 
Applications of pure Mathematics to produce or modifie motion in in
ferior bodies. 

Kevin G. Long 

To say that it was on account of the need to use some ma
chine to describe them, one must, for the same reason, ex
clude circles and right lines; seeing that one does not de
scribe the latter on paper save with a compass and rule, 
which could be called machines as well. 17 

The second interpretation is based upon the various degrees 
of exactness required in the two disciplines: 

Neither is it because the instruments used to draw them, 
being more complicated than the rule and compass, cannot 
be as exact; since for this reason one should exclude them 
from mechanics, which demands exactness in that which 
is drawn by the hand, rather than from Geometry, where 
one seeks only exactness in reasoning. For the latter can un
doubtedly be had as completely with these (complex) lines 
as with the others. 18 

It seems that Descartes neglects the fact that in mechan
ics, as in other sciences, there is both an order of discovery 
and an order of exposition. According to the first, we must 
have, as Descartes suggests, "exactness in what is drawn by 
hand." For example, when investigating the laws of motion 
governing the pendulum, one must be meticulous in graph
ically representing the results of measurements in order to 
see that the pendulum obeys a sine function. But once this 
discovery has been made, one can then apply, following the 
order of exposition, all the rigors of mathematical reasoning 
to the physical motion. It is only the latter which is the sci
ence of mechanics, properly so-called. Thus, the exactness of 
the hand is incidental to mechanics, and cannot be used to 
distinguish that science from geometry. 

The third interpretation is based upon the desirability in 
geometry of requiring as few postulates as possible: 

17 La Geometrie, p. 315 (my translation). 
18 Ibid., pp. 315-16 (my translation). 
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Nor would I say the cause to be that they did not want to 
multiply the numbers of postulates, and that they were con
tent that one concede the possibility of joining two given 
points with a right line and describing a circle with a given 
center and passing it through a given point. For they had 
no qualms whatsoever about supposing [a postulate] other 
than these in order to treat the conic sections: that any given 
cone can be cut by a given plane. 19 

Mter giving his own view of the proper distinction be
tween geometrical and mechanical curves, to which we will 
return, he gives two reasons why the ancients may actually 
have excluded linear constructions from geometry. 

The first is based upon the way in which motion is involved 
in the consideration of these lines: 

But perhaps what prevented the ancient Geometers from ad
mitting those [lines] more complex than the conic sections 
is that the first of these considered by them were, as chance 
would have it, the Spiral, the Quadratix, and the like. 

Now these in fact appear to belong only to Mechanics and 
are not in the least to be numbered among those that I think 
ought here to be admitted. For one imagines them described 
by two separate motions having no relation between them
selves which one can measure exacdy. But having afterward 
examined the Conchoid and Cissoid and some few others 
which are [constructed] of them, they nonetheless made no 
more account of these than they did of the first, perhaps 
because they did not sufficiendy discern their properties. 20 

The second reason supposes that the ancients acted upon 
a prudential decision to follow the proper order of investiga
tion: 

Or else it is that, seeing themselves to know but a few things 
concerning the conic sections and that much still remained 
unknown concerning what can be made with the rule and 

19 Ibid., p. 316 (my translation). 
20 Ibid., pp. 316-17 (my translation). 
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compass, they believed that more difficult matters ought not 
to be engaged in. 21 

It is the first of these two alleged reasons which is most 
illuminating here. It is apparent upon careful examination of 
the four complex curves described above that the spiral and 
the quadratix depend upon motion far more than the con
choid or the cissoid. Although, as noted above, all four must 
be constructed with motion, the latter need not be defined with 
motion, but may be defmed as loci of points. On the other 
hand, the inclusion of motion in the defmitions of the spi
ral and quadratix is essential. A sign of this is the necessity 
of positing a uniform velocity in both the defmition and the 
construction of the spiral and quadratix, while in the construc
tion of the conchoid and cissoid the velocity is incidental. The 
ancients, claims Descartes, did not appreciate this distinction 
and hence, were reluctant to admit any of these curves into 
pure geometry. 

Descartes' assumption is that there are some conditions un
der which motion may be admitted into pure geometry. This 
contention is supported by the inclusion into geometry of the 
so-called "solids of revolution" by Euclid and Apollonius. The 
status of these solids, therefore, ought to be investigated next 
in order to determine the validity of Descartes' claim. 

3. The Solids of Revolution 

Euclid is sometimes criticized by modern writers for his use 
of motion in defming the so-called solids of revolution, i.e., 
the sphere, the cone and the cylinder. Such a reference to mo
tion, they claim, constitutes a "lapse" in his otherwise pure 
geometry: 

One even notices such a lapse in Euclid wherein he makes 
use of ideas of motion and the translation ofbodies.22 

21 Ibid., p. 317 (my translation). 
22 John F. Kiley, Einstein and Aquinas: A Rapprochement. 
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These definitions should therefore be examined to see whe
ther, and to what extent, Euclid is guilty in this regard. The 
definitions will first be presented, then commented upon, spe
cial attention being given to that of the sphere. 

The sphere is the first solid of revolution which Euclid de
fines: 

When, the diameter of a semicircle remaining fixed, the 
semicircle is carried round and restored again to the same 
position from which it began to moved, the figure so com
prehended is a sphere. 23 

The next such solid to be defined is the cone: 

When, one side of those about the right angle in a right
angled triangle remaining fixed, the triangle is carried round 
and restored again to the same position from which it began 
to be moved, the figure so comprehended is a cone. 24 

Finally, Euclid defines the cylinder: 

When, one side of those about the right angle in a rect
angular parallelogram remaining fixed, the parallelogram is 
carried around and restored again to the same position from 
which it began to be moved, the figure so comprehended 
is a cylinder. 25 

It is clear that some motion is involved in each of these 
definitions, namely the revolution of the semicircle, of the 
right triangle and of the rectangle, respectively. But what is 
equally striking is the curious way in which the definitions 
are phrased. Neglecting his familiar pattern of genus and dif
ference, Euclid has cast these in the form of a proposition, or 
more specifically, a construction. 

This leads to an obstacle in our investigation. With the 
complex curves, we distinguished between motion in their 
very definition and motion only in their construction. But in 

23 Elements, Bk. XI, De£ 14. 
24 Op. dt., De£ 18 . 
25 Op. cit., De£ 21. 
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the case of the solids of revolution, this distinction is not so 
clear. The first question, it seems, is whether these are true 
definitions at all. The definition of the sphere will be consid
ered first. 

The sphere appears to be to the solids, analogously, what 
the circle is to the plane figures. One would expect, therefore, 
that the definition of the sphere be analogous to that of the 
circle [seep. 79]. This method, suggested by Aristotle in his 
De Caelo,26 is given explicitly by Heron of Alexandria: 

A sphere is a solid figure bounded by one surface such that 
all the straight lines falling on it from one point of those 
which lie within the figure are equal to one another. 27 

This, of course, presupposes that Euclid's method of defining 
the circle is preferable to his method of defining the sphere. 
If, on the contrary, the latter method is preferable, one would 
expect an analogous definition of the circle: 

A circle is the figure described when a straight line, always 
remaining in one plane, moves about one extremity as a 
fixed point until it returns to its first position.28 

Eliminating the anomaly in this way, however, merely extends 
to the circle the difficulty we originally encountered with the 
sphere, namely, that it does not appear to be a definition at all. 
Thus it appears that Heron's definition of the sphere, mod
eled on that of the circle, is more properly a definition than 
Euclid's. 

Another anomaly is that the sphere, unlike most of those 
things defined in Euclid's Elements, is accompanied neither 
by a construction distinct from the definition, nor a postu
late asserting the sphere's existence. Nor is the definition it
self, strictly speaking, a construction, since no attempt is made 
to prove that what has been constructed is in fact a sphere. 

26 De Caelo, Bk. II, Chap. 14 (297a 24). 
27 Quoted in Heath, Euclid, Vol. III, p. 269. 
28 Heath, Euclid, Vol. I, p. 184. 
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Even so, such a proof would seem to require a prior definition 
of the sphere and a postulate which allows the revolution of 
any given plane figure about one of its sides. 

If the definition of the sphere is neither a construction nor 
a definition proper, the possibility remains that the sphere is a 
primary object whose existence and essence are both assumed. 
Since the circle, as noted above, is a primary object in plane 
geometry, it would not be surprising to discover something 
similar about the sphere. But although the essence and the ex
istence of the circle are both assumed, they are not assumed 
at the same time. First the circle is defmed, then its existence 
is postulated, since there is nothing prior out of which it can 
be constructed. Thus, it seems, this last possibility must be 
excluded as well. 

However, two of the things we have just said concerning 
the circle should be well noted: first, it is a primary object in 
plane geometry; and second, it is prior to every construction. 
Reflection on these two points will assist in resolving our 
difficulties with the sphere. 

The science of plane geometry has for its genus subjectum 
magnitude extended in two dimensions: length and breadth. 
Solid geometry, on the other hand, considers magnitude ex
tended in three dimensions: length, depth and breadth. Now, 
two-dimensional objects are abstracted from three-dimen
sional objects ( abstractio a materialibus condicionibus), while the 
latter are abstracted from sensible things (abstractio a materia 
sensibilis). 29 Thus, in the order of discovery, two-dimensional 
objects are posterior to, and more abstract than, three-dimen
sional objects. Because their objects differ in degree (and kind) 
of abstraction, the sciences of plane geometry and solid ge
ometry can therefore be distinguished: 

Speculative sciences are differentiated according to their de
gree of separation from matter and motion. 30 

29 For the various meanings of abstractio, see Deferrari, pp. 12-13. 
30 In Boethium de Trinitate, Q. 5, art 1., corp. (emphasis added). 
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Two-dimensional figures are nevertheless prior in the or
der of exposition. Thus plane geometry precedes solid geom
etry in the proper order of acquiring the sciences. But lest 
the solid geometer be required to prove the propositions of 
plane geometry all over again, he assumes the conclusions of 
that science as principles in his own. Thus solid geometry is a 
derivative science with respect to plane geometry. And Plato 
was rightfully at pains to distinguish the two in the Republic. 31 

Returning to our second observation on the circle, it is now 
apparent that the analogy between the circle and the sphere is 
not as complete as was originally assumed. Whereas the circle 
is a primary object in a primitive science, the sphere is only 
primary in a derivative one. The circle cannot be understood 
or constructed by means of anything more simple or funda
mental, either in plane geometry or in any other science. The 
sphere is the most simple and fundamental among solids, but 
it can be understood in terms of the circle, or more precisely, 
the semicircle. Similarly with the cone and cylinder. 

Since the defmitions of the sphere, cone and cylinder oc
cupy a peculiar place in the science, it should not be surprising 
that the defmitions are themselves peculiar. For they must be 
defmed in such a way that the knowledge of plane geometry 
can be applied readily to solid figures by using the defmitions 
as middle terms of demonstrations. This is accomplished by 
the inclusion of the semicircle, the triangle and the rectangle 
in the defmitions of the sphere, cone and cylinder. These are 
nominal defmitions appropriate for a beginner in the science 
of solid geometry. The most proper definition of the sphere 
remains the one given by Heron of Alexandria. 

The significance of motion in the nominal defmition is not 
the motion itself, but the unbroken continuum which the mo
tions describe. Thus, once the solid is described, the disparity 
between the realms of plane and solid geometry is overcome, 
and the motion becomes irrelevant. 

31 Republic, Bk. VII (528b). 
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Euclid's definitions of the solids of revolution are called ge
netic, since they make things known by their genesis or origin. 
The consideration of origins is a dialectical tool common to 
the sciences, as is clear from Aristotle's Politics: 

He who considers things in their first growth and origin 
(YEVEOLI;) [genesis], whether a state, or anything else, will ob
tain the clearest view of them. 32 

Thus Euclid's "lapses" are in fact only nominal definitions 
used as dialectical tools to bridge the gap between the conclu
sions of a primitive science and the principles of a derivative 
one. 

Let us return, therefore, to the complex curves, to see 
whether their use of motion can be justified similarly. 

4. The Complex Curves 

The sphere, cone and cylinder, as we have seen, need not be 
defmed with motion. In this respect, they resemble the con
choid and cissoid rather than the spiral and quadratix. And 
even though the solids can be generated with motion, as are 
the complex curves, they need not be generated at all, since 
they are the primary objects of their science. 

The sphere, cone and cylinder are simple figures which 
present themselves naturally and immediately to even the most 
youthful and untutored mind33 as objects of contemplation. 
Their properties, however, can be discovered only by patient 
investigation. The spiral, quadratix, conchoid and cissoid, on 
the other hand, appear to be artificial constructs whose prop
erties are useful for particular purposes: squaring the circle, 
trisecting the angle, etc. They are understood only by those 
advanced in the geometrical sciences. They are neither pri-

32 Politics, Bk. I, Chap. 1 (1252a 24-25). 
33 C£ Ethics, Bk. I, Chap. 3 (1095a 2-5). 
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mary objects nor are they constructible from those which are. 
The artificiality of the complex curves renders their place 

in the mathematical sciences dubious. Galileo excludes them 
from his mathematical considerations of motion, in spite of 
the fact that mathematicians "have very commendably estab
lished the properties which these curves possess in virtue of 
their defmitions," 

And first of all it seems desirable to fmd and explain a def
inition best fitting natural phenomena. For anyone may in
vent an arbitrary type of motion and discuss its properties; 
thus, for instance, some have imagined helices [spirals] and 
conchoids as described by certain motions which are not met 
with in nature. 34 

It is plausible that the ancients shared Galileds apprehension 
about the complex curves when they relegated to the category 
of''linear'' any construction employing them. Descartes' dis
tinction between the spiral and the quadratix on the one hand, 
and the conchoid and cissoid on the other, is an important 
one. Yet it serves to distinguish the complex curves rather than 
to justify their inclusion into geometry proper. 

Our investigation of the complex curves brings to light a 
point which is of great importance in understanding the prin
ciples of mathematics. The mathematical sciences, like all the
oretical sciences, examine an order which man neither brings 
about nor changes. This distinguishes the theoretical sciences 
from the practical sciences and the arts. Even though geome
try employs constructions, they are ordered to the knowledge 
acquired as a result. 

The introduction of complex curves into geometry as ob
jects just as worthy of contemplation as the circle, triangle, 
sphere and cone, undermines the basis in nature, and hence, 
the certainty of the science. Geometry would become, as 

34 Two New Sdences, Third Day, n. 197, p. 153 (emphasis added). 
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Hobbes and Mill have suggested, a series of purely logical de
ductions from arbitrary premises. Although this view of ge
ometry does not appear explicitly in Descartes' La Giometrie, 
it seems to be characteristic of post-Cartesian mathematics. 35 

V. Definitions of the ''Conic Sections'' 

I . Apollonius: Sections of a Cone 

The curves known as "conic sections," the hyperbola, the 
parabola, and the ellipse, take their generic name from one of 
the earlier methods of defining them, namely, the intersection 
of a conic surface with a cutting plane. 

Undoubtedly, the best-known formulations of the defini
tion by conic section are those of Apollonius given in his 
treatise On Conic Sections. Apollonius "defines" the parabola, 
hyperbola and ellipse as constructions, much the same way 
that Euclid "defmes" the solids of revolution. While there is 
no motion involved per se in conic sections, the operation of 
"cutting" a cone by a plane is simply asserted. As we shall 
see, this operation is necessary in order that the conclusions 
of elementary geometry can readily be applied to the investi
gation of these curves. 

The defmitions of the hyperbola, parabola and ellipse all 
suppose a cone "cut by a plane through its axis," that is, 
through the line drawn from the vertex to the center of the 
circle which forms its base. This plane does not produce the 
curves, but rather an axial triangle which becomes extremely 
useful for defining, and later, investigating the conic sections. 

35 E.g., mathematics viewed as an axiomatic system by Kant. 
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Fig. 1 

Apollonius imagines the second cutting plane to intersect 
the plane of the cone's base in a line perpendicular to the base 
of the axial triangle. (see Fig. r) If the line of intersection falls 
beyond the base of the cone [y], the section will be an ellipse. 
If it falls within the base [x], it will be either a parabola or an 
hyperbola. Since he distinguishes the latter two by reference 
to their "diameters," it will be helpful to determine what he 
means by the term: 

Fig. 2 

Of any curved line which is in one plane, I call that straight 
line the diameter [ d in Figure 2] which, drawn from the 
curved line, bisects all straight lines [e.g. w, x, y, z] drawn 
to this curved line parallel to some straight line [a]. 1 

If then, the diameter of the curve produced by the surface 
of the cone and the second cutting plane is parallel to one of 
the sides of the axial triangle, it is a parabola. (see Fig. 3) If 
when produced, however, it meets one of those sides, it is a 
hyperbola. (see Fig. 4) 

1 On Conic Sections, Bk. I, Defmition 4. 
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Fig. 4 

With these things in mind, let us examine the precise for-
mulations which Apollonius himself lays out: 

Parabola: If a cone is cut by a plane through its axis, and 
also cut by another plane cutting the base of the cone in 
a straight line perpendicular to the base of the axial trian
gle, and if further the diameter of the section is parallel to 
one side of the axial triangle . . . such a section [is] called a 
parabola. 2 

Hyperbola: If a cone is cut by a plane through its axis, 
and also cut by another plane cutting the base of the cone in 
a straight line perpendicular to the base of the axial triangle 
beyond the vertex of the cone . . . such a section [is] called 
an hyperbola. 3 

Ellipse: If a cone is cut by a plane through its axis and 
is also cut by another plane on the one hand meeting both 
sides of the axial triangle, and on the other extended neither 
parallel to the base nor subcontrariwise [in which two cases 
it will be a circle], and if the plane the base of the cone is in, 
and the cutting plane meet in a straight line perpendicular 
either to the base of the axial triangle or to it produced ... 
such a section [is] called an ellipse. 4 

It should thus be clear that, for Apollonius, the intelligi
bility of the hyperbola, parabola and ellipse arise out of the 
prior intelligibility of the cone, at least as far as his treatise is 

2 Loc dt., Prop. II. 

3 Loc dt., Prop. 12. 

4 Loc dt., Prop. 13. 
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concerned. Using the cone, its axial triangle, and the defini
tions cited above, he is able to deduce a number of curious 
properties of the conic sections. 

Let us now return to the geometry ofDescartes. 

2 . Decartes: Loci if Points 

Pappus, a Greek mathematician of the third century A.D., pro
posed a problem which subsequent geometers had not been 
able to solve using the methods of Euclid and Apollonius: 

If [four] straight lines are given in position, and if straight 
lines be drawn from one and the same point, making given 
angles with the [four] given lines ... and if the rectangle of 
two of the lines so drawn bears a given ratio to the rectangle 
of the other two; then ... the point lies on a solid locus 
given in position, namely, one of the three conic sections. 5 

In other words, iflines AB, AD, EF and GH in the diagram 
at left are given in position, 6 angles a, ~. y, and() are constant, 
and the ratio 

rect. CB,CF : rect. CD,CH 

is kept constant, the locus of all the points C will be one of 
the conic sections. 

5 La Geometrie, p. 306 [p. 21]. 

6 To the extent that this statement of the problem anticipates the mod
ern "Cartesian coordinate system," credit should be given to Pappus 
rather than Descartes. Even so, this coordinate system differs from the 
modern conception in three important ways: (r) there are four axes, not 
two; (2) the axes need not be perpendicular; and (3) there is no "fourth 
quadrant," i.e., no area defmed by multiplying one negative quantity by 
another negative quantity, Descartes' English translators lamented that 
he was "not able to free himself from the old [Euclidean] traditions ... " 
(Latham and Smith, p. 17, n. 26). However, they offer no proof that such 
quantities exist nor provide either a defmition of them or a method of 
constructing them. 
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Descartes begins his solution to tlus problem by assigning 
to the unknown quantities AB and CB the values x and y. 
Then, assigning other letters [b, c, d, e, f, g and z] to repre
sent the numerous known quantities given in the problem, he 
arrives at four equations for the four lines drawn from point 
G: 

C'B=y 

CD = czyf;bcx 
z 

C'H = gzy+f~l+fqx 
z 

By the terms of the problem, we know that CB·CF 
CD·CH. 7 Thus, by substitution and simplification, we ar
rive at the following rather complicated equation: 8 

2 _ ( cf glz-dekz 2 )y- ( dez 2 +cf gz-bcgz) xy+bcf glx -bcf gx 2 

Y - ez 3 -cgz 2 

. . £ cflqz-dek2 d 2n £ hi Fortunately, by substltutmg 2m or ez"-cgz2 an --;- or t s 
equation can be reduced to: 9 

y = m - ;x + Jm2 + ox:+ ;;x2 

Descartes claims that it is "a simple matter" to determine the 
curves "in terms of Theorems 11, 12, and r 3 of the ftrst book 
of Apollonius." 10 How simple? "If the term ;;x2 is zero, the 

7 It should be noted that Pappus stated d1e problem in terms of rect
angles whereas Descartes restates it in terms of his own "multiplication 
of lines." It is beyond the scope of our present discussion to determine 
whether or not Descartes' restatement is ultimately "legitin1ate." 

8 La Geometrie, p. 325 (p. 6o). 
9 Loc cit., p. 326 (p. 63). 

10 Loc cit., p. 332 (my translation). 
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[curve] is a parabola; if it is designated by a plus sign, it is an 
hyperbola; and finally, if it is designated by a minus sign, it is 
an ellipse." 11 

What is of interest here is how Descartes proves that one 
of three "properties" (the three possible versions of the equa
tion) must belong to the locus described in the problem, and 
then refers to Apollonius to show that the hyperbola, parabola 
and ellipse are the only curves to which these properties be
long. 12 (In certain special cases, the solution of the equation 
is a circle, which for our purposes can be regarded as merely 
a special case of the ellipse.) 

While Descartes does not formally diftne the hyperbola, 
parabola and ellipse as loci of points, there is no reason in 
principle why one could not, since, as we have seen, the lo
cus is a legitimate method of definition. 

The locus in fact has become the standard method of def
inition in many textbooks of mathematics. The following is 
from A First Year of College Mathematics, published in 1937: 

A conic section (or conic) is the locus of [points] whose dis
tance from a certain fixed point is in a constant ratio to its 
distance from a fixed straight line. 13 

One problem with such a definition is that the perfectly sen
sible notion of a "locus of points" too easily degenerates into 
the self-contradictory expression "an infinite set of points." 

11 Loc cit., p. 328 (my translation). 
12 Despite its bewildering complexity, the argument of La Geometrie 

can be reduced to two first-figure syllogisms. Let he_ be "the solution of 
the four-line locus problem;" !i, "the curves defined by Descartes;" ~, 
"the curves defmed by Apollonius;" Q_. "the conic sections." 

Then: (1) A is B (2) A is C 
B is C 
A is C 

Cis D 
AisD 

The second conclusion is that thus the solution to the four-line locus 
problem is one of the conic sections. 

13 Brink, A First Year of College Mathematics, p. 399· 
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Such indefensible statements can be found in any number of 
other noteworthy textbooks. 14 

Yet a far more serious objection is that the natures of the 
hyperbola, parabola and ellipse are not illuminated by describ
ing them as four-line loci or by reducing them to an equation. 
Rather, all three are thereby reduced to the status of artificial 
curves as intrinsically uninteresting as the conchoid, the cis
said or the quadratix. By contrast, when defmed as sections 
of a cone, they seem to "come to life" as worthy objects of 
mathematical wonder. More will be said on this topic in the 
Epilogue. 

Let us turn to the method of defming used by Pascal. 

3. Pascal: Projection if the Circle 

Pascal's Generation of the Conic Sections is the first draft of an 
uncompleted treatise. It is preserved only in a copy made by 
Leibnitz. He begins with a generation of the cone which dif
fers from both Euclid's and Apollonius' in that the cone is 
"infmite" in extension. 

I 

I 

If a straight line, infmite in both directions [AB in the fig
ure at left], is drawn from a point [C] taken outside of the 
plane of a circle to a point taken on its circumference, and 
if it is rotated about the circumference while the first point 

14 E.g., Hardy, Pure Mathematics, p. 24. 
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remains fixed, the surface which this straight line describes 
in its rotation is called a conic surface ... The line so taken 
and kept fixed in some arbitrary position of its rotation will 
be called the generatrix. 15 

With this in his imagination, Pascal further imagines him
self as an observer situated at the vertex of the cone looking at 
the projection of the generating circle upon some plane beyond 
it. Of course, if the plane is parallel to the generating circle, 
the projection will be a circle as well. But if not, the projec
tion, interestingly, will be an hyperbola, parabola or ellipse. 

In this context, a projection is a species oflocus. It is the 
locus of all points on the plane of projection which are co
linear with both the vertex of the cone and any point on the 
generating circle. 

The projection is an ellipse "if the plane of projection ... 
is not parallel to any generatrix, that is to say, to any ray." It 
is apparent from Figure 2 that for every point on the circle 
there is a corresponding point on the ellipse. 

Fig. 2 Fig. 3 

Likewise, the projection is a parabola "if the plane of pro
jection is parallel to one of the generatrices only, that is to say, 
to a single ray." Curiously, the point on the circle through 
which that one generatrix passes is the only one which has 
no corresponding point on the parabola. (see Fig. 3) 

15 This and all other citations from Pascal's treatise are from an anony
mous unpublished translation in the possession of the author. 
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Fig. 4 

Similarly, the projection is an hyperbola "if the plane of 
projection is parallel to two of the generatrices." There are 
three curiosities involved here. The first is that there are two 
"missing points," that is, two points on the circle which have 
no counterparts on the hyperbola. The second is that if the 
lines of projection are drawn down from the vertex through 
the circle, only one half of the hyperbola is produced and 
only one arc of the circle is projected. The other part of the 
hyperbola is obtained by drawing the lines of projection up 
from the remaining arc of the circle through the vertex into 
the upper half of the cone. The third is that the two "missing 
points" separate these two arcs of the projected circle. 

What is interesting about Pascal's use of projection to defme 
the conics is the way in which it unifies the three apparently 
heterogeneous curves. They can all be viewed as projections 
of the same circle upon three different planes. Thus, Pascal also 
avoids the arbitrariness of defming the curves by equations. 

The major disadvantage of Pascal's approach is that there 
is nothing in his defmitions which can be used as a middle 
term of demonstration. As a consequence, his treatment of the 
conics, unlike that of Apollonius, is not a progressive series 
of theorems, but a succession of scholia and corollaries. The 
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reader must rely upon his powers of imagination and intuition 
rather than discursive reasoning. In short, Pascal's defmitions 
appear to be incapable of producing scientific knowledge. 

It remains to consider the defmition of conics by means of 
motion. 

4. Classical Mechanics: Paths if a ((Moving Point" 

In his Principia Mathematica, Newton includes a number of 
propositions dealing with hyperbolic, parabolic and elliptical 
"orbits," that is, the paths of a "moving point" which consti
tute an hyperbola, parabola or ellipse. 16 While Newton does 
not explicitly define the conic sections at all, his method of de
scribing them as "paths of a moving point" has had such an im
pact that a number of standard reference works have adopted 
it as a defmition. The following defmitions are taken from 
Webster's Seventh New Collegiate Dictionary: 

ellipse: y + x = k 

ellipse, a closed plane curve generated by a point moving in 
such a way that the sums of its distances from two ftxed 
points is a constant. 17 

hyperbola: y - x = k 

16 See Principia, Bk. I, Section III, esp. Propositions II, 12, 13. 

17 Webster's Seventh New Collegiate Dictionary, p. 268. 
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hyperbola, a plane curve generated by a point so moving that 
the difference of the distances from two fixed points is a 
constant. 18 

!I" 

I 

:x" 
' 

parabola: y = x 

parabola, a plane curve generated by a point moving so that 
its distance from a fixed point is equal to its distance from 
a fixed line. 19 

This method of defining the conic sections is subject to the 
same critique given of the complex curves in Chapter IV. Like 
the conchoid and the cissoid, the hyperbola, parabola and el
lipse can just as easily be defmed as loci of points. But as long 
as the conic sections are defmed with motion, they are me
chanical in the sense of belonging more to the sdentiae mediae 
than to pure geometry. Appropriately, the most interesting ap
plications of the conic sections qua "paths of a moving point" 
are in Kepler's and Newton's work in the derivative science 
of astronomy and Galileds study of projectile motion.20 

5· Epilogue 

In this chapter, we have laid out four ways in which the conic 
sections can be defmed. It remains to determine the status of 
each method within the mathematical sciences, as well as the 
status of the conic sections themselves. 

18 Op. dt., 408. 
19 Op. dt., p. 610; th~ Oxford English Dictionary, on the other hand, 

defmes the conic sections statically, i.e. as loci of points. 
20 Two New Sdences, The Fourth Day, passim. 
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As we have already noted, the use of motion places the 
defmition of the conics as "paths of a moving point" outside 
of pure geometry, although the disciplines which employ this 
method fall within the quadrivium of the liberal arts. 

Pascal's use of projection has the advantage of illustrating 
that the conic sections are neither completely arbitrary nor 
completely heterogeneous, but it lacks the advantage of pro
viding a middle term of demonstration. 

On the other hand, Descartes' equation derived from the 
terms of the four-line locus problem has the dual advantage of 
a) providing a middle term of demonstration; and b) showing 
the unity of the conic sections (all can be represented by the 
same equation). Yet there is nothing in the equation itself 
which suggests that the hyperbola, parabola and ellipse are 
any less arbitrary than the conchoid, cissoid or quadratix. 

Only Apollonius' defmition by conic section preserves in 
a unified way all three of the advantages found severally in 
Pascal and Descartes. It must be admitted, however, that the 
unity of the hyperbola, parabola and ellipse are more striking 
in Pascal than in Apollonius, and that Descartes' equation is 
easier to manipulate and wider in its application than Apol
lonius' cumbersome apparatus. 

Turning now to the conic sections themselves, it should be 
observed that, while they are certainly made more intelligi
ble by being defined as sections of a cone or projections of a 
circle, the fact that they can be defmed independently as loci 
of points or paths of a moving point illustrates that they are 
primary objects of a science, namely, the branch of geometry 
called conics. 

The conic sections cannot be constructed from anything 
more simple. In fact, just as the primary objects of plane ge
ometry (lines and circles) are necessary and sufficient for all 
constructions which the ancients called plane, so likewise the 
primary objects of conics (hyperbolas, parabolas, and ellipses) 
are necessary and, along with lines and circles, sufficient for 
all constructions called solid. 

I05 



-r~",·"r,' 

DEFINITION IN GEOMETRY 

What remains disconcerting is that the hyperbola, parabola 
and ellipse are not nearly as accessible to the imagination's 
grasp as other primary objects, like the sphere, cylinder and 
cone. In fact, it is precisely this inaccessibility which makes 
Descartes' equation so attractive. But because the conic sec
tions are primary objects, they possess a virtually inexhaustible 
number ofinteresting properties yet to be discovered and thus 
remain a standing challenge to man's sense of wonder. 

It has been argued in this article that there is a distinc
tion between arbitrary curves like the conchoid, cissoid and 
quadratix which men have fabricated for specific purposes, and 
non-arbitrary curves which have been discovered, whose proper
ties can be explored, and which belong to an order of things 
which men did not create nor can men change. The latter are 
objects of science, the former are works of art. Although there 
may exist many curves which are at ftrst difficult to categorize 
in this way, a practical rule for distinguishing them is strongly 
suggested in this passage: 

There is a great difference between the works of man and 
the works of God, that the same minute and searching inves
tigation which displays the defects and imperfections of the 
one, brings out also the beauties of the other. If the most 
ftnely polished needle on which the art of man has been 
expended be subjected to a microscope, many inequalities, 
much roughness and clumsiness, will be seen. But if the 
microscope be brought to bear on the flowers of the fteld, 
no such result appears. Instead of their beauty diminishing, 
new beauties and still more delicate, that have escaped the 
naked eye are forthwith discovered. 21 

21 Hislop, The Two Babylons, p. 1. 
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